57 research outputs found

    Peroxisome Proliferator-Activated Receptor-γ Regulates the Expression of Alveolar Macrophage Macrophage Colony- Stimulating Factor

    Get PDF
    Macrophage CSF (M-CSF) regulates monocyte differentiation, activation, and foam cell formation. We have observed that it is elevated in human pulmonary alveolar proteinosis (PAP) and in the GMCSF knockout mouse, a murine model for PAP. A potential regulator of M-CSF, peroxisome proliferator-activated receptor-γ (PPARγ), is severely deficient in both human PAP and the GM-CSF knockout mouse. To investigate the role of PPARγ in alveolar macrophage homeostasis, we generated myeloidspecific PPARγ knockout mice using the Lys-Cre method to knock out the floxed PPARγ gene. Similar to the GM-CSF-deficient mouse, absence of alveolar macrophage PPARγ resulted in development of lung pathology resembling PAP in 16-wk-old mice, along with excess M-CSF gene expression and secretion. In ex vivo wild-type alveolar macrophages, we observed that M-CSF itself is capable of inducing foam cell formation similar to that seen in PAP. Overexpression of PPARγ prevented LPS-stimulated M-CSF production in RAW 264.7 cells, an effect that was abrogated by a specific PPARγ antagonist, GW9662. Use of proteasome inhibitor, MG-132 or a PPARγ agonist, pioglitazone, prevented LPS-mediated M-CSF induction. Using chromatin immunoprecipitation, we found that PPARγ is capable of regulating M-CSF through transrepression of NF-κB binding at the promoter. Gel-shift assay experiments confirmed that pioglitazone is capable of blocking NF-κB binding. Taken together, these data suggest that M-CSF is an important mediator of alveolar macrophage homeostasis, and that transcriptional control of M-CSF production is regulated by NF-κB and PPARγ

    Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 Infection is Morphologically Indistinguishable from Other Causes of DAD

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162704/2/his14180.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162704/1/his14180_am.pd

    Thalidomide-Related Eosinophilic Pneumonia: A case report and brief literature review

    Get PDF
    Thalidomide has regained value in the multimodality treatment of leprosy, multiple myeloma, prostate, ovarian and renal cancer. Complications related to arterial and venous complications are well described. However, pulmonary complications remain relatively uncommon. The most common pulmonary side-effect reported is non-specific dyspnea. We report a patient with multiple myeloma, who developed an eosinophilic pneumonia, shortly after starting thalidomide. She had complete resolution of her symptoms and pulmonary infiltrates on discontinuation of the drug and treatment with corticosteroids. Physicians should be cognizant of this potential complication in patients receiving thalidomide who present with dyspnea and pulmonary infiltrates

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
    • …
    corecore