4,055 research outputs found
Searching for binary coalescences with inspiral templates: Detection and parameter estimation
There has been remarkable progress in numerical relativity recently. This has
led to the generation of gravitational waveform signals covering what has been
traditionally termed the three phases of the coalescence of a compact binary -
the inspiral, merger and ringdown. In this paper, we examine the usefulness of
inspiral only templates for both detection and parameter estimation of the full
coalescence waveforms generated by numerical relativity simulations. To this
end, we deploy as search templates waveforms based on the effective one-body
waveforms terminated at the light-ring as well as standard post-Newtonian
waveforms. We find that both of these are good for detection of signals.
Parameter estimation is good at low masses, but degrades as the mass of the
binary system increases.Comment: 14 pages, submitted to proceedings of the NRDA08 meeting, Syracuse,
Aug. 11-14, 200
Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis.
BACKGROUND:The need for a rapid, molecular test to diagnose tuberculosis (TB) has prompted exploration of TB-LAMP (Eiken; Tokyo, Japan) for use in resource-limited settings. We conducted a systematic review to assess the accuracy of TB-LAMP as a diagnostic test for pulmonary TB. METHODS:We analyzed individual-level data for eligible patients from all studies of TB-LAMP conducted between Jan 2012 and October 2015 to compare the diagnostic accuracy of TB-LAMP with that of smear microscopy and Xpert MTB/RIF® using 3 reference standards of varying stringency. Pooled sensitivity and specificity and pooled differences in sensitivity and specificity were estimated using random effects meta-analysis. Study quality was evaluated using QUADAS-2. RESULTS:Four thousand seven hundred sixty individuals across 13 studies met eligibility criteria. Methodological quality was judged to be low for all studies. TB-LAMP had higher sensitivity than sputum smear microscopy (pooled sensitivity difference + 13·2, 95% CI 4·5-21·9%) and similar sensitivity to Xpert MTB/RIF (pooled sensitivity difference - 2·5, 95% CI -8·0 to + 2·9) using the most stringent reference standard available. Specificity of TB-LAMP was similar to that of sputum smear microscopy (pooled specificity difference - 1·8, 95% CI -3·8 to + 0·2) and Xpert MTB/RIF (pooled specificity difference 0·5, 95% CI -0·9 to + 1·8). CONCLUSIONS:From the perspective of diagnostic accuracy, TB-LAMP may be considered as an alternative test for sputum smear microscopy. Additional factors such as cost, feasibility, and acceptability in settings that continue to rely on sputum smear microscopy should be considered when deciding to adopt this technology. Xpert MTB/RIF should continue to be preferred in settings where resource and infrastructure requirements are adequate and where HIV co-infection or drug-resistance is of concern
Black holes in the low mass gap: Implications for gravitational wave observations
Binary neutron-star mergers will predominantly produce black-hole remnants of
mass , thus populating the putative \emph{low mass gap}
between neutron stars and stellar-mass black holes. If these low-mass black
holes are in dense astrophysical environments, mass segregation could lead to
"second-generation" compact binaries merging within a Hubble time. In this
paper, we investigate possible signatures of such low-mass compact binary
mergers in gravitational-wave observations. We show that this unique population
of objects, if present, will be uncovered by the third-generation
gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope.
Future joint measurements of chirp mass and effective spin
could clarify the formation scenario of compact objects in the
low mass gap. As a case study, we show that the recent detection of GW190425
(along with GW170817) favors a double Gaussian mass model for neutron stars,
under the assumption that the primary in GW190425 is a black hole formed from a
previous binary neutron star merger.Comment: 8 pages, 4 figures, 1 table. v4: matches the version accepted for
publication in Phys. Rev.
Comparison of Gravitational Wave Detector Network Sky Localization Approximations
Gravitational waves emitted during compact binary coalescences are a
promising source for gravitational-wave detector networks. The accuracy with
which the location of the source on the sky can be inferred from gravitational
wave data is a limiting factor for several potential scientific goals of
gravitational-wave astronomy, including multi-messenger observations. Various
methods have been used to estimate the ability of a proposed network to
localize sources. Here we compare two techniques for predicting the uncertainty
of sky localization -- timing triangulation and the Fisher information matrix
approximations -- with Bayesian inference on the full, coherent data set. We
find that timing triangulation alone tends to over-estimate the uncertainty in
sky localization by a median factor of for a set of signals from
non-spinning compact object binaries ranging up to a total mass of , and the over-estimation increases with the mass of the system. We
find that average predictions can be brought to better agreement by the
inclusion of phase consistency information in timing-triangulation techniques.
However, even after corrections, these techniques can yield significantly
different results to the full analysis on specific mock signals. Thus, while
the approximate techniques may be useful in providing rapid, large scale
estimates of network localization capability, the fully coherent Bayesian
analysis gives more robust results for individual signals, particularly in the
presence of detector noise.Comment: 11 pages, 7 Figure
- …