4 research outputs found

    A Model of Free Tissue Transfer: The Rat Epigastric Free Flap

    Get PDF
    Free tissue transfer has been increasingly used in clinical practice since the 1970s, allowing reconstruction of complex and otherwise untreatable defects resulting from tumor extirpation, trauma, infections, malformations or burns. Free flaps are particularly useful for reconstructing highly complex anatomical regions, like those of the head and neck, the hand, the foot and the perineum. Moreover, basic and translational research in the area of free tissue transfer is of great clinical potential. Notwithstanding, surgical trainees and researchers are frequently deterred from using microsurgical models of tissue transfer, due to lack of information regarding the technical aspects involved in the operative procedures. The aim of this paper is to present the steps required to transfer a fasciocutaneous epigastric free flap to the neck in the rat. This flap is based on the superficial epigastric artery and vein, which originates from and drain into the femoral artery and vein, respectively. On average the caliber of the superficial epigastric vein is 0.6 to 0.8 mm, contrasting with the 0.3 to 0.5 mm of the superficial epigastric artery. Histologically, the flap is a composite block of tissues, containing skin (epidermis and dermis), a layer of fat tissue (panniculus adiposus), a layer of striated muscle (panniculus carnosus), and a layer of loose areolar tissue. Succinctly, the epigastric flap is raised on its pedicle vessels that are then anastomosed to the external jugular vein and to the carotid artery on the ventral surface of the rat's neck. According to our experience, this model guarantees the complete survival of approximately 70 to 80% of epigastric flaps transferred to the neck region. The flap can be evaluated whenever needed by visual inspection. Hence, the authors believe this is a good experimental model for microsurgical research and training.info:eu-repo/semantics/publishedVersio

    Is the proteome of bronchoalveolar lavage extracellular vesicles a marker of advanced lung cancer?

    Get PDF
    Acellular bronchoalveolar lavage (BAL) proteomics can partially separate lung cancer from non-lung cancer patients based on principal component analysis and multivariate analysis. Furthermore, the variance in the proteomics data sets is correlated mainly with lung cancer status and, to a lesser extent, smoking status and gender. Despite these advances BAL small and large extracellular vehicles (EVs) proteomes reveal aberrant protein expression in paracrine signaling mechanisms in cancer initiation and progression. We consequently present a case-control study of 24 bronchoalveolar lavage extracellular vesicle samples which were analyzed by state-of-the-art liquid chromatography-mass spectrometry (LC-MS). We obtained evidence that BAL EVs proteome complexity correlated with lung cancer stage 4 and mortality within two years´ follow-up (p value = 0.006). The potential therapeutic target DNMT3B complex is significantly up-regulated in tumor tissue and BAL EVs. The computational analysis of the immune and fibroblast cell markers in EVs suggests that patients who deceased within the follow-up period display higher marker expression indicative of innate immune and fibroblast cells (four out of five cases). This study provides insights into the proteome content of BAL EVs and their correlation to clinical outcomes.R.M. is supported by Fundação para a Ciência e a Tecnologia (CEEC position, 2019–2025 investigator). This article is a result of the projects (iNOVA4Health—UID/Multi/04462/2013), supported by Lisboa Portugal Regional Operational Programme (Lisboa2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work is also funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the projects number PTDC/BTM-TEC/30087/2017 and PTDC/BTM-TEC/30088/2017. This work was supported by the Wellcome Trust/DBT India Alliance Margdarshi Fellowship (grant number IA/M/15/1/502023) awarded to A.P. B.C.-S., M.C.S.C. and C.B. are supported by the Champalimaud Foundation and the EMBO Installation Grant 3921

    Biotechnological approaches in management of oomycetes diseases

    No full text
    corecore