20 research outputs found

    G protein estrogen receptor as a potential therapeutic target in Raynaud’s phenomenon

    Get PDF
    Exaggerated cold-induced vasoconstriction can precipitate a pathogenesis called Raynaud’s phenomenon (RP). Interestingly, RP is significantly more prevalent in females than age-matched men, highlighting the potential implication of 17β-estradiol (E2) in the etio-pathogenesis of this disease. Indeed, we have previously reported that E2 stimulates the expression of vascular alpha 2C-adrenoceptors (α2C-AR), the sole mediator of cold-induced constriction of cutaneous arterioles. This induced expression occurs through the cyclic adenosine monophosphate → exchange protein activated by cAMP→ Ras-related protein 1→ c-Jun N-terminal kinase→ activator protein-1 (cAMP/Epac/Rap/JNK/AP-1 pathway). On the basis that estrogen-induced rapid cAMP accumulation and JNK activation occurs so rapidly we hypothesized that a non-classic, plasma membrane estrogen receptor was the mediator. We then showed that an impermeable form of E2, namely E2:BSA, mimics E2 effects suggesting a role for the membranous G-protein coupled estrogen receptor (GPER) in E2-induced α2C-AR expression. Our current working hypothesis and unpublished observations further cement this finding, as G1, a GPER agonist, mimics while G15, a GPER antagonist, abrogates estrogen’s effect on the expression of vascular α2C-AR. These, and other observations, highlight the potential of GPER as a tractable target in the management of RP, particularly in pre-menopausal women.APCs for this paper have been offset by a generous support from Frontiers as part of the support offered to women in pharmacology, for the specific invitation to Women in Translational Pharmacology: 2021

    Biochemical and cellular basis of oxidative stress: Implications for disease onset

    Get PDF
    Cellular oxidation–reduction (redox) systems, which encompass pro- and antioxidant molecules, are integral components of a plethora of essential cellular processes. Any dysregulation of these systems can cause molecular imbalances between the pro- and antioxidant moieties, leading to a state of oxidative stress. Long-lasting oxidative stress can manifest clinically as a variety of chronic illnesses including cancers, neurodegenerative disorders, cardiovascular disease, and metabolic diseases like diabetes. As such, this review investigates the impact of oxidative stress on the human body with emphasis on the underlying oxidants, mechanisms, and pathways. It also discusses the available antioxidant defense mechanisms. The cellular monitoring and regulatory systems that ensure a balanced oxidative cellular environment are detailed. We critically discuss the notion of oxidants as a double-edged sword, being signaling messengers at low physiological concentrations but causative agents of oxidative stress when overproduced. In this regard, the review also presents strategies employed by oxidants including redox signaling and activation of transcriptional programs such as those mediated by the Nrf2/Keap1 and NFk signaling. Likewise, redox molecular switches of peroxiredoxin and DJ-1 and the proteins they regulate are presented. The review concludes that a thorough comprehension of cellular redox systems is essential to develop the evolving field of redox medicine.Open Access funding provided by Qatar National Library. [Correction added on 25 July 2023, after first online publication: Acknowledgement section has been inserted.

    Ziziphus nummularia attenuates the malignant phenotype of human pancreatic cancer cells: Role of ros

    Get PDF
    Pancreatic cancer (PC) is the fourth leading cause of all cancer-related deaths. Despite major improvements in treating PC, low survival rate remains a major challenge, indicating the need for alternative approaches, including herbal medicine. Among medicinal plants is Ziziphus nummu-laria (family Rhamnaceae), which is a thorny shrub rich in bioactive molecules. Leaves of Ziziphus nummularia have been used to treat many pathological conditions, including cancer. However, their effects on human PC are still unknown. Here, we show that the treatment of human pancreatic ductal adenocarcinoma cells (Capan-2) with Ziziphus nummularia ethanolic extract (ZNE) (100–300 µg/mL) attenuated cell proliferation in a time-and concentration-dependent manner. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated the anti-proliferative effect of ZNE. In addition, ZNE significantly decreased the migratory and invasive capacity of Capan-2 with a concomitant downregulation of integrin α2 and increased cell–cell aggregation. In addition, ZNE inhibited in ovo angiogenesis as well as reduced VEGF and nitric oxide levels. Furthermore, ZNE downregulated the ERK1/2 and NF-κB signaling pathways, which are known to drive tumorigenic and metastatic events. Taken together, our results suggest that ZNE can attenuate the malignant phenotype of Capan-2 by inhibiting hallmarks of PC. Our data also provide evidence for the potential anticancer effect of Ziziphus nummularia, which may represent a new resource of novel anticancer compounds, especially ones that can be utilized for the management of PC

    Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells

    Get PDF
    Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC

    Estrogen receptor and the gender bias in Raynaud's phenomenon.

    No full text
    Estrogen receptor and the gender bias in Raynaud's phenomenon

    Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Get PDF
    Raynaud's phenomenon (RP) is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR). In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs) orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks

    GPER acts through the cAMP/Epac/JNK/AP-1 pathway to induce transcription of alpha 2C adrenoceptor in human microvascular smooth muscle cells.

    No full text
    Raynaud's phenomenon (RP), which results from exaggerated cold-induced vasoconstriction, is more prevalent in females than males. We previously showed that estrogen increases the expression of alpha 2C-adrenoceptors (α2C-AR), the sole mediator of cold-induced vasoconstriction. This effect of estrogen is reproduced by the cell-impermeable form of the hormone (E2:BSA), suggesting a role of the membrane estrogen receptor, GPER, in E2-induced α2C-AR expression. We also previously reported that E2 upregulates α2C-AR in microvascular smooth muscle cells (VSMCs) via the cAMP/Epac/Rap/JNK/AP-1 pathway, and that E2:BSA elevates cAMP levels. We, therefore, hypothesized that E2 employs GPER to upregulate α2C-AR through the cAMP/Epac/JNK/AP-1 pathway. Our results show that G15, a selective GPER antagonist, attenuates the E2-induced increase in α2C-AR transcription. G-1, a selective GPER agonist, induced α2C-AR transcription, which was concomitant with elevated cAMP levels and JNK activation. Pretreatment with ESI09, an Epac inhibitor, abolished both G-1-induced α2C-AR upregulation and JNK activation. Moreover, pretreatment with SP600125, a JNK specific inhibitor, but not H89, a PKA specific inhibitor, abolished G-1-induced α2C-AR upregulation. In addition, transient transfection of an Epac dominant negative mutant (Epac-DN) attenuated G-1-induced activation of α2C-AR promoter. This inhibitory effect of Epac-DN on α2C-AR promoter was overridden by the co-transfection of constitutively active JNK mutant. Furthermore, mutation of AP-1 site in the α2C-AR promoter abrogated G1-induced expression. Collectively, these results indicate that GPER upregulates α2C-AR through the cAMP/EPAC/ JNK/AP-1 pathway. These findings unravel GPER as a new mediator of cold-induced vasoconstriction, and present it as a potential target for treating RP in estrogen-replete females. [Abstract copyright: Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

    Repurposing cilostazol for raynaud's phenomenon

    No full text
    Raynaud's Phenomenon (RP) results from exaggerated cold-induced vasoconstriction. RP patients suffer from vasospastic attacks and compromised digital blood perfusion leading to a triple color change at the level the fingers. Severe RP may cause ulcers and threaten tissue viability. Many drugs have been used to alleviate the symptoms of RP. These include calcium-channel blockers, cGMP-specific phosphodiesterase type 5 inhibitors, prostacyclin analogs, and angiotensin receptor blockers. Despite their variety, these drugs do not treat RP but rather alleviate its symptoms. To date, no drug for RP has been yet approved by the U.S Food and Drugs Administration. Cilostazol is a selective inhibitor of phosphodiesterase-III, originally prescribed to treat intermittent claudication. Owing to its antiplatelet and vasodilating properties, cilostazol is being repurposed as a potential drug for RP. This review focuses on the different lines of action of cilostazol serving to enhance blood perfusion in RP patients

    Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction

    No full text
    Cutaneous cold-induced vasoconstriction is a normal physiological reaction mediated by alpha 2C-adrenergic receptors (α2C-ARs) expressed in vascular smooth muscle cells (VSMCs). When this reaction is exaggerated, Raynaud's phenomenon (RP) ensues. RP is more prevalent in females compared to age-matched men. We previously established that 17-β estradiol (estrogen) upregulates α2C-ARs in human VSMCs via a cAMP/Epac/Rap pathway. We also showed that cAMP acts through JNK to increase α2C-AR expression. However, whether estrogen employs JNK to regulate α2C-AR is not investigated. Knowing that the α2C-AR promoter harbors an activator protein-1 (AP-1) binding site that can be potentially activated by JNK, we hypothesized that estrogen regulates α2C-AR expression through an Epac/JNK/AP-1 pathway. Our results show that estrogen (10−10 M) activated JNK in human VSMCs extracted from cutaneous arterioles. Pretreatment with ESI09 (10 μM; an Epac inhibitor), abolished estrogen-induced JNK activation. In addition, pre-treatment with SP600125 (3 μM; a JNK specific inhibitor) abolished estrogen-induced expression of α2C-AR. Importantly, estrogen-induced activation of α2C-AR promoter was attenuated with SP600125. Moreover, transient transfection of VSMCs with an Epac dominant negative mutant (Epac-DN) abolished estrogen-induced activation of α2C-AR promoter. However, co-transfection of constitutively active JNK mutant overrode the inhibitory effect of Epac-DN on α2C-AR promoter. Moreover, estrogen caused a concentration-dependent increase in the activity of AP-1-driven reporter construct. Mutation of AP-1 site in the α2C-AR promoter abolished its activation by estrogen. This in vitro estrogen-increased α2C-AR expression was mirrored by an increase in the ex vivo functional responsiveness of arterioles. Indeed, estrogen potentiated α2C-AR-mediated cold-induced vasoconstriction, which was abolished by SP600125. Collectively, these results indicate that estrogen upregulates α2C-AR expression via an EPAC-mediated JNK/AP-1- dependent mechanism. These results provide an insight into the mechanism by which exaggerated cold-induced vasoconstriction occurs in estrogen-replete females and identify Epac and JNK as potential targets for the treatment of RP.This publication was made possible by an MPP Fund (# 320133 ) from the American University of Beirut-Faculty of Medicine to Ali Eid and The National Center for Scientific Research award to Manal Fardoun.Scopu

    Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets

    No full text
    Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.This publication was made possible by an MPP fund [grant number 320133] and a Farouk Jabre Award from the American University of Beirut (to Ali H. Eid).Scopu
    corecore