86 research outputs found

    Probing the extragalactic fast transient sky at minute timescales with DECam

    Get PDF
    Searches for optical transients are usually performed with a cadence of days to weeks, optimised for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour timescales. Here, we present the results of deep searches for dim, minute-timescale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20s exposures to systematically probe timescales down to 1.17 minutes at magnitude limits g>23g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multi-band imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multi-facility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-timescale fast optical transient rates for a range of depths and timescales. Finally, we demonstrate that optical gg-band light curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.Comment: Published in MNRA

    Detection of a glitch in the pulsar J1709-4429

    Get PDF
    We report the detection of a glitch event in the pulsar J1709−-4429 (also known as B1706−-44) during regular monitoring observations with the Molonglo Observatory Synthesis Telescope (UTMOST). The glitch was found during timing operations, in which we regularly observe over 400 pulsars with up to daily cadence, while commensally searching for Rotating Radio Transients, pulsars, and FRBs. With a fractional size of Δν/ν≈52.4×10−9\Delta\nu/\nu \approx 52.4 \times10^{-9}, the glitch reported here is by far the smallest known for this pulsar, attesting to the efficacy of glitch searches with high cadence using UTMOST.Comment: 3 pages, 1 figur

    The UTMOST pulsar timing programme II:Timing noise across the pulsar population

    Get PDF
    While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the timing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0-4.8 years by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825−-0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency (ν\nu) and spin-down frequency (ν˙\dot{\nu}), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as νa∣ν˙∣b\nu^{a} |\dot{\nu}|^{b}, where a=−0.84−0.49+0.47a = -0.84^{+0.47}_{-0.49} and b=0.97−0.19+0.16b = 0.97^{+0.16}_{-0.19}. This method can be easily adapted to utilise more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737−-3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.Comment: Accepted by MNRAS. 28 pages, 8 figures, 8 table

    COSMIC: An Ethernet-based Commensal, Multimode Digital Backend on the Karl G. Jansky Very Large Array for the Search for Extraterrestrial Intelligence

    Full text link
    The primary goal of the search for extraterrestrial intelligence (SETI) is to gain an understanding of the prevalence of technologically advanced beings (organic or inorganic) in the Galaxy. One way to approach this is to look for technosignatures: remotely detectable indicators of technology, such as temporal or spectral electromagnetic emissions consistent with an artificial source. With the new Commensal Open-Source Multimode Interferometer Cluster (COSMIC) digital backend on the Karl G. Jansky Very Large Array (VLA), we aim to conduct a search for technosignatures that is significantly more comprehensive, more sensitive, and more efficient than previously attempted. The COSMIC system is currently operational on the VLA, recording data, and designed with the flexibility to provide user-requested modes. This paper describes the hardware system design, the current software pipeline, and plans for future development.Comment: 30 pages, 17 figures. Accepted for publication in A

    Precise Measurements of Self-absorbed Rising Reverse Shock Emission from Gamma-ray Burst 221009A

    Full text link
    The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a "prompt" gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circum-burst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A which reveal an optically thick rising component from the reverse shock in unprecedented detail both temporally and in frequency space. From this, we are able to constrain the size, Lorentz factor, and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst.Comment: 11 figures, 4 table
    • …
    corecore