37 research outputs found

    MAPPING SOIL SPATIAL VARIABILITY AT HIGH DETAIL BY PROXIMAL SENSORS FOR A VINEYARD PLANNING

    Get PDF
    Planning new vineyard needs accurate information about soil features and their spatial variability. The use of soil proximal sensors, coupled by few detailed soil observations and analysis allows to obtain high detailed maps of soil variability at affordable costs. The work showed the methodology to interpolate the proximal sensors data and to delineate homogeneous area by clustering, corresponding to likely soil units. The description and analysis of one profile for each homogeneous area allowed to describe the soil features of each soil typological units and to produce useful thematic maps for vineyard planning

    Fantappie's group as an extension of special relativity on Cantorian space-time

    Full text link
    In this paper we will analyze the Fantappie group and its properties in connection with Cantorian space-time. Our attention will be focused on the possibility of extending special relativity. The cosmological consequences of such extension appear relevant, since thanks to the Fantappie group, the model of the Big Bang and that of stationary state become compatible. In particular, if we abandon the idea of the existence of only one time gauge, since we do not see the whole Universe but only a projection, the two models become compatible. In the end we will see the effects of the projective fractal geometry also on the galactic and extra-galactic dynamics.Comment: 14 pages, accepted in Chaos, Solitons and Fractal

    Assessment of soil ecosystem in degraded areas of vineyards after organic treatments

    Get PDF
    In Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include reduced contribution of the soil fauna to the ecosystem services such as nutrient cycles and organic matter turnover. ReSolVe is a transnational and interdisciplinary project, supported by Core-Organic+ program, aimed at testing the effects of selective agronomic strategies for restoring optimal soil functionality in degraded areas within organic vineyard. For this purpose, the evaluation and biomonitoring of the abundance of soil mesofauna, nematodes and microarthropods, represents an efficient tool to characterize the effects of crop management on soil quality. Assessing enzyme activities involved in the main biogeochemical cycling of C, N, P and S can also provide indication of soil functions and health status. Italian experimental plots are situated in two commercial farms in Tuscany: i) Fontodi, Panzano in Chianti (FI), which has been managed organically for more than 20 years and ii) San Disdagio, Roccastrada (GR), under organic farming since 2014. In each farm, three plots (250 m2 each) in the degraded areas and three relative control plots in the non-degraded areas were selected. The different restoring strategies implemented in each area were: i) compost, produced on farm by manure + pruning residue + grass, ii) faba bean and winter barley green manure, iii) dry mulching after sowing with Trifolium squarrosum L. Each treated and control plot has been studied for soil nematodes, microarthropods, enzymatic activity, and organic matter turnover using tea-bag index, as well as total organic carbon (TOC) and total nitrogen (TN). Soil sampling was carried out to 0-30 cm depth for TOC, TN, enzymes and nematodes and to 10 cm for microarthropods. Tea-bag index was determined following the Keuskamp et al. method (2013), in order to gather data on decomposition rate and litter stabilisation by using commercially available tea bags as standardised test kits. The extraction of nematodes and microarthropods were performed by the Bermann method and the Berlese- Tullgren selector, respectively. The biological soil quality was evaluated by the Maturity Index of nematodes (MI) and Biological Soil Quality index of microarthropods (QBSar). The results from soil sampling before restoring showed significantly lower values of SOC and TN in degraded areas, but no significant differences between degraded and non-degraded areas for enzymes, QBSar, nematode abundance and MI. Fontodi farm, under organic management since many years, showed significantly higher abundance of microarthropods, nematodes and enzymes than San Disdagio farm. The application of restoration techniques in 2016 showed a significant increase of TOC and TN only under compost addition treatment. As regards microarthropod communities, all the treatments showed a sensible increase in abundance and the conservation of high QBSar values. All the treatments increased the fungal feeder activity of nematodes and decreased the number of plant parasitic nematodes taxa. The major pest of grapes, the virus-vector Xiphinema index (Longidoridae), disappeared in the treated plots, whereas it remained in the control plots

    Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization

    Get PDF
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models

    Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass‐loss rate and stabilization

    Get PDF
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large‐scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass‐loss rates and stabilization factors of plant‐derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy‐to‐degrade components accumulate during early‐stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass‐loss rates and stabilization, notably in colder locations. Using TBI improved mass‐loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early‐stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models

    "Analysis of CCFL phenomena by CATHARE 1 v1.3 and comparison with results of RELAP5/MOD2 code", 8th CATHARE CUC Meet., Grenoble (F), March 23-25, 1988

    No full text
    Cathare cod was developed in France by (primarily) CEA (Commissariat a l’Energie Atomique). UNIPI was the first institution outside France which received the code produced in the Grenoble CEA Center CENG. The activity of independent code assessment was financially supported by EURATOM within the FP1, FP2 and FP3 programs (UNIPI took benefit of those). The present report discusses capabilities of the Cathare code in predicting Counter Current Flow Limiting (CCFL) phenomenon. CCFL data, involving liquid and steam flowing countercurrent, were measured in the Upper Tie Plate (UTP) of a specific nuclear fuel bundle available at the Hannover University in Germany. A comparison was mad between Cathare results, experimental data and results obtained by Relap5 code. The activity opened a several years cooperation between UNIPI and CEA which involved several UNIPI students working in Grenoble for long time periods (6- 12 months)
    corecore