22 research outputs found

    Identification of novel proteins binding the AU-rich element of \u3b1-prothymosin mRNA through the selection of open reading frames (RIDome)

    Get PDF
    We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of \u3b1-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex

    Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum

    Get PDF
    Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents

    Molecular dynamics simulations on the mechanicalMolecular dynamics simulations on the mechanical heterogeneous evolution in metallic glasses

    No full text
    Phage display technologies are powerful tools for selecting binding ligands against purified molecular targets, live cells, and organ vasculature. However, the selection of natural ligands using phage display has been limited because of significant problems associated with the display of complex cDNA repertoires. Here we describe the use of cDNA fragmentation and open reading frame (ORF) selection to display a human placental cDNA library on the pIII coat protein of filamentous phage. The library was enriched for ORFs by selecting cDNA-β-lactamase fusion proteins on ampicillin, resulting in a cDNA population having 97% ORFs. The ORF-selected cDNAs were fused to pIII in the phagemid vector, pUCMG4CT-198, and the library was rescued with a pIII-deleted helper phage for multivalent display. The resulting phagemid particle library consisted of 87% ORFs, compared to only 6% ORFs when prepared without ORF selection. Western blot analysis indicated cDNA-pIII fusion protein expression in eight out of nine ORF clones tested, and seven of the ORF encoded peptides were displayed multivalently. The high level of cDNA expression obtained by ORF selection suggests that ORF-enriched phage cDNA libraries prepared by these methods will be useful as functional genomics tools for identifying natural ligands from various source tissues. </jats:p

    Deposition and organisation of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy

    No full text
    International audienceTo advance our understanding of the formation of tension wood, we investigated the macromolecular arrangement in cell walls by Fourier transform infrared microspectroscopy (FTIR) during maturation of tension wood in poplar (Populus tremula x P. alba, clone INRA 717-1B4). The relation between changes in composition and the deposition of the G-layer in tension wood was analysed. Polarised FTIR measurements indicated that in tension wood, already before G-layer formation, a more ordered structure of carbohydrates at an angle more parallel to the fibre axis exists. This was clearly different from the behaviour of opposite wood. With the formation of the S2 layer in opposite wood and the G-layer in tension wood, the orientation signals from the amorphous carbohydrates like hemicelluloses and pectins were different between opposite wood and tension wood. For tension wood, the orientation for these bands remains the same all along the cell wall maturation process, probably reflecting a continued deposition of xyloglucan or xylan, with an orientation different to that in the S2 wall throughout the whole process. In tension wood, the lignin was more highly oriented in the S2 layer than in opposite wood
    corecore