2 research outputs found

    Structural variation of the malaria-associated human glycophorin A-B-E region

    No full text
    BACKGROUND: Approximately 5% of the human genome shows common structural variation, which is enriched for genes involved in the immune response and cell-cell interactions. A well-established region of extensive structural variation is the glycophorin gene cluster, comprising three tandemly-repeated regions about 120 kb in length and carrying the highly homologous genes GYPA, GYPB and GYPE. Glycophorin A (encoded by GYPA) and glycophorin B (encoded by GYPB) are glycoproteins present at high levels on the surface of erythrocytes, and they have been suggested to act as decoy receptors for viral pathogens. They are receptors for the invasion of the protist parasite Plasmodium falciparum, a causative agent of malaria. A particular complex structural variant, called DUP4, creates a GYPB-GYPA fusion gene known to confer resistance to malaria. Many other structural variants exist across the glycophorin gene cluster, and they remain poorly characterised. RESULTS: Here, we analyse sequences from 3234 diploid genomes from across the world for structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes project cohort, discovering 9 new variants, and characterising a selection of these variants using fibre-FISH and breakpoint mapping at the sequence level. We identify variants predicted to create novel fusion genes and a common inversion duplication variant at appreciable frequencies in West Africans. We show that almost all variants can be explained by non-allelic homologous recombination and by comparing the structural variant breakpoints with recombination hotspot maps, confirm the importance of a particular meiotic recombination hotspot on structural variant formation in this region. CONCLUSIONS: We identify and validate large structural variants in the human glycophorin A-B-E gene cluster which may be associated with different clinical aspects of malaria

    COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19

    No full text
    The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p
    corecore