101 research outputs found

    Why Public Health Needs GIS?

    Get PDF
    This presentation was given as part of the GIS Day@KU symposium on November 13, 2019. For more information about GIS Day@KU activities, please see http://gis.ku.edu/gisday/2019/PLATINUM SPONSORS: KU Department of Geography and Atmospheric Science KU Institute for Policy & Social Research GOLD SPONSORS: KU Libraries State of Kansas Data Access & Support Center (DASC) SILVER SPONSORS: Bartlett & West Kansas Applied Remote Sensing Program KU Center for Global and International Studies BRONZE SPONSORS: Boundles

    Street centrality and land use intensity in Baton Rouge, Louisiana

    Get PDF
    This paper examines the relationship between street centrality and land use intensity in Baton Rouge, Louisiana. Street centrality is calibrated in terms of a node's closeness, betweenness and straightness on the road network. Land use intensity is measured by population (residential) and employment (business) densities in census tracts, respectively and combined. Two CIS-based methods are used to transform data sets of centrality (at network nodes) and densities (in census tracts) to one unit for correlation analysis. The kernel density estimation (KDE) converts both measures to raster pixels, and the floating catchment area (FCA) method computes average centrality values around census tracts. Results indicate that population and employment densities are highly correlated with street centrality values. Among the three centrality indices, closeness exhibits the highest correlation with land use densities, straightness the next and betweenness the last. This confirms that street centrality captures location advantage in a city and plays a crucial role in shaping the intraurban variation of land use intensity. (C) 2010 Elsevier Ltd. All rights reserved

    Analyzing spatial aggregation error in statistical models of late-stage cancer risk: a Monte Carlo simulation approach

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This paper examines the effect of spatial aggregation error on statistical estimates of the association between spatial access to health care and late-stage cancer.</p> <p>Methods</p> <p>Monte Carlo simulation was used to disaggregate cancer cases for two Illinois counties from zip code to census block in proportion to the age-race composition of the block population. After the disaggregation, a hierarchical logistic model was estimated examining the relationship between late-stage breast cancer and risk factors including travel distance to mammography, at both the zip code and census block levels. Model coefficients were compared between the two levels to assess the impact of spatial aggregation error.</p> <p>Results</p> <p>We found that spatial aggregation error influences the coefficients of regression-type models at the zip code level, and this impact is highly dependent on the study area. In one study area (Kane County), block-level coefficients were very similar to those estimated on the basis of zip code data; whereas in the other study area (Peoria County), the two sets of coefficients differed substantially raising the possibility of drawing inaccurate inferences about the association between distance to mammography and late-stage cancer risk.</p> <p>Conclusions</p> <p>Spatial aggregation error can significantly affect the coefficient values and inferences drawn from statistical models of the association between cancer outcomes and spatial and non-spatial variables. Relying on data at the zip code level may lead to inaccurate findings on health risk factors.</p

    Estimating a Large Drive Time Matrix between Zip Codes in the United States: A Differential Sampling Approach

    Full text link
    Estimating a massive drive time matrix between locations is a practical but challenging task. The challenges include availability of reliable road network (including traffic) data, programming expertise, and access to high-performance computing resources. This research proposes a method for estimating a nationwide drive time matrix between ZIP code areas in the U.S.--a geographic unit at which many national datasets such as health information are compiled and distributed. The method (1) does not rely on intensive efforts in data preparation or access to advanced computing resources, (2) uses algorithms of varying complexity and computational time to estimate drive times of different trip lengths, and (3) accounts for both interzonal and intrazonal drive times. The core design samples ZIP code pairs with various intensities according to trip lengths and derives the drive times via Google Maps API, and the Google times are then used to adjust and improve some primitive estimates of drive times with low computational costs. The result provides a valuable resource for researchers
    corecore