31 research outputs found

    Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

    Get PDF
    The six-vertex model in statistical physics is a weighted generalization of the ice model on Z^2 (i.e., Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper three-colorings). The phase diagram of the model represents its physical properties and suggests where local Markov chains will be efficient. In this paper, we analyze the mixing time of Glauber dynamics for the six-vertex model in the ordered phases. Specifically, we show that for all Boltzmann weights in the ferroelectric phase, there exist boundary conditions such that local Markov chains require exponential time to converge to equilibrium. This is the first rigorous result bounding the mixing time of Glauber dynamics in the ferroelectric phase. Our analysis demonstrates a fundamental connection between correlated random walks and the dynamics of intersecting lattice path models (or routings). We analyze the Glauber dynamics for the six-vertex model with free boundary conditions in the antiferroelectric phase and significantly extend the region for which local Markov chains are known to be slow mixing. This result relies on a Peierls argument and novel properties of weighted non-backtracking walks

    Analyzing Boltzmann Samplers for Bose-Einstein Condensates with Dirichlet Generating Functions

    Full text link
    Boltzmann sampling is commonly used to uniformly sample objects of a particular size from large combinatorial sets. For this technique to be effective, one needs to prove that (1) the sampling procedure is efficient and (2) objects of the desired size are generated with sufficiently high probability. We use this approach to give a provably efficient sampling algorithm for a class of weighted integer partitions related to Bose-Einstein condensation from statistical physics. Our sampling algorithm is a probabilistic interpretation of the ordinary generating function for these objects, derived from the symbolic method of analytic combinatorics. Using the Khintchine-Meinardus probabilistic method to bound the rejection rate of our Boltzmann sampler through singularity analysis of Dirichlet generating functions, we offer an alternative approach to analyze Boltzmann samplers for objects with multiplicative structure.Comment: 20 pages, 1 figur

    Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

    Full text link
    Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is governed by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint kk that runs in O(log(n))O(\log(n)) adaptive rounds and makes O(nlog(k))O(n \log(k)) oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.Comment: 12 pages, 8 figure

    Nearly Tight Bounds for Sandpile Transience on the Grid

    Full text link
    We use techniques from the theory of electrical networks to give nearly tight bounds for the transience class of the Abelian sandpile model on the two-dimensional grid up to polylogarithmic factors. The Abelian sandpile model is a discrete process on graphs that is intimately related to the phenomenon of self-organized criticality. In this process, vertices receive grains of sand, and once the number of grains exceeds their degree, they topple by sending grains to their neighbors. The transience class of a model is the maximum number of grains that can be added to the system before it necessarily reaches its steady-state behavior or, equivalently, a recurrent state. Through a more refined and global analysis of electrical potentials and random walks, we give an O(n4log4n)O(n^4\log^4{n}) upper bound and an Ω(n4)\Omega(n^4) lower bound for the transience class of the n×nn \times n grid. Our methods naturally extend to ndn^d-sized dd-dimensional grids to give O(n3d2logd+2n)O(n^{3d - 2}\log^{d+2}{n}) upper bounds and Ω(n3d2)\Omega(n^{3d -2}) lower bounds.Comment: 36 pages, 4 figure

    Approximately Sampling Elements with Fixed Rank in Graded Posets

    Full text link
    Graded posets frequently arise throughout combinatorics, where it is natural to try to count the number of elements of a fixed rank. These counting problems are often #P\#\textbf{P}-complete, so we consider approximation algorithms for counting and uniform sampling. We show that for certain classes of posets, biased Markov chains that walk along edges of their Hasse diagrams allow us to approximately generate samples with any fixed rank in expected polynomial time. Our arguments do not rely on the typical proofs of log-concavity, which are used to construct a stationary distribution with a specific mode in order to give a lower bound on the probability of outputting an element of the desired rank. Instead, we infer this directly from bounds on the mixing time of the chains through a method we call balanced bias\textit{balanced bias}. A noteworthy application of our method is sampling restricted classes of integer partitions of nn. We give the first provably efficient Markov chain algorithm to uniformly sample integer partitions of nn from general restricted classes. Several observations allow us to improve the efficiency of this chain to require O(n1/2log(n))O(n^{1/2}\log(n)) space, and for unrestricted integer partitions, expected O(n9/4)O(n^{9/4}) time. Related applications include sampling permutations with a fixed number of inversions and lozenge tilings on the triangular lattice with a fixed average height.Comment: 23 pages, 12 figure

    Submodular Maximization with Nearly Optimal Approximation, Adaptivity and Query Complexity

    Full text link
    Submodular optimization generalizes many classic problems in combinatorial optimization and has recently found a wide range of applications in machine learning (e.g., feature engineering and active learning). For many large-scale optimization problems, we are often concerned with the adaptivity complexity of an algorithm, which quantifies the number of sequential rounds where polynomially-many independent function evaluations can be executed in parallel. While low adaptivity is ideal, it is not sufficient for a distributed algorithm to be efficient, since in many practical applications of submodular optimization the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of adaptive submodular optimization. Our main result is a distributed algorithm for maximizing a monotone submodular function with cardinality constraint kk that achieves a (11/eε)(1-1/e-\varepsilon)-approximation in expectation. This algorithm runs in O(log(n))O(\log(n)) adaptive rounds and makes O(n)O(n) calls to the function evaluation oracle in expectation. The approximation guarantee and query complexity are optimal, and the adaptivity is nearly optimal. Moreover, the number of queries is substantially less than in previous works. Last, we extend our results to the submodular cover problem to demonstrate the generality of our algorithm and techniques.Comment: 30 pages, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019

    A Fast Minimum Degree Algorithm and Matching Lower Bound

    Full text link
    The minimum degree algorithm is one of the most widely-used heuristics for reducing the cost of solving large sparse systems of linear equations. It has been studied for nearly half a century and has a rich history of bridging techniques from data structures, graph algorithms, and scientific computing. In this paper, we present a simple but novel combinatorial algorithm for computing an exact minimum degree elimination ordering in O(nm)O(nm) time, which improves on the best known time complexity of O(n3)O(n^3) and offers practical improvements for sparse systems with small values of mm. Our approach leverages a careful amortized analysis, which also allows us to derive output-sensitive bounds for the running time of O(min{mm+,Δm+}logn)O(\min\{m\sqrt{m^+}, \Delta m^+\} \log n), where m+m^+ is the number of unique fill edges and original edges that the algorithm encounters and Δ\Delta is the maximum degree of the input graph. Furthermore, we show there cannot exist an exact minimum degree algorithm that runs in O(nm1ε)O(nm^{1-\varepsilon}) time, for any ε>0\varepsilon > 0, assuming the strong exponential time hypothesis. This fine-grained reduction goes through the orthogonal vectors problem and uses a new low-degree graph construction called UU-fillers, which act as pathological inputs and cause any minimum degree algorithm to exhibit nearly worst-case performance. With these two results, we nearly characterize the time complexity of computing an exact minimum degree ordering.Comment: 17 page
    corecore