1,087 research outputs found

    Pinpointing astrophysical bursts of low-energy neutrinos embedded into the noise

    Get PDF
    We propose a novel method to increase the probability of identifying impulsive astrophysical bursts of low-energy neutrinos. The proposed approach exploits the temporal structure differences between astrophysical bursts and background fluctuations and it allows us to pinpoint weak signals otherwise unlikely to be detected. With respect to previous search strategies, this method strongly reduces the misidentification probability, e.g. for Super Kamiokande this reduction is a factor of ∌9\sim 9 within a distance of D∌200D\sim 200 kpc without decreasing the detection efficiency. In addition, we extend the proposed method to a network of different detectors and we show that the Kamland &\& LVD background reduction is improved by a factor ∌20\sim 20 up to an horizon of D∌75D\sim75 kpc

    Gravitational Wave Radiation from Compact Binary Systems in the Jordan-Brans-Dicke Theory

    Get PDF
    In this paper we analyze the signal emitted by a compact binary system in the Jordan-Brans-Dicke theory. We compute the scalar and tensor components of the power radiated by the source and study the scalar waveform. Eventually we consider the detectability of the scalar component of the radiation by interferometers and resonant-mass detectors

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K

    Get PDF
    We present the performances and the strain sensitivity of the first spherical gravitational wave detector equipped with a capacitive transducer and read out by a low noise two-stage SQUID amplifier and operated at a temperature of 5 K. We characterized the detector performance in terms of thermal and electrical noise in the system output sygnal. We measured a peak strain sensitivity of 1.5⋅10−20Hz−1/21.5\cdot 10^{-20} Hz^{-1/2} at 2942.9 Hz. A strain sensitivity of better than 5⋅10−20Hz−1/25\cdot 10{-20}Hz{-1/2} has been obtained over a bandwidth of 30 Hz. We expect an improvement of more than one order of magnitude when the detector will operate at 50 mK. Our results represent the first step towards the development of an ultracryogenic omnidirectional detector sensitive to gravitational radiation in the 3kHz range.Comment: 8 pages, 5 figures, submitted to Physical Review

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure

    MiniGRAIL progress report 2004

    Get PDF
    The MiniGRAIL detector was improved. The sphere was replaced by a slightly larger one, having a diameter of 68 cm (instead of 65 cm), reducing the resonant frequency by about 200 Hz to around 2.9 kHz. The last four masses of the attenuation system were machined to increase their resonant frequency and improve the attenuation around the resonant frequency of the sphere. In the new sphere, six holes were machined on the TIGA positions for easy mounting of the transducers. During the last cryogenic run, two capacitive transducers and a calibrator were mounted on the sphere. The first transducer was coupled to a double-stage SQUID amplifier having a commercial quantum design SQUID as a first stage and a DROS as a second stage. The second transducer was read by a single-stage quantum design SQUID. During the cryogenic run, the sphere was cooled down to 4 K. The two-stage SQUID had a flux noise of about 1.6 ÎŒ0 Hz−1/2. The detector was calibrated and the sensitivity curve of MiniGRAIL was determined

    Testing Theories of Gravity with a Spherical Gravitational Wave Detector

    Get PDF
    We consider the possibility of discriminating different theories of gravity using a recently proposed gravitational wave detector of spherical shape. We argue that the spin content of different theories can be extracted relating the measurements of the excited spheroidal vibrational eigenmodes to the Newman-Penrose parameters. The sphere toroidal modes cannot be excited by any metric GW and can be thus used as a veto.Comment: latex file, 16 pages, 1 figur

    Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K

    Get PDF
    The interaction between cosmic rays and the gravitational wave bar detector NAUTILUS is experimentally studied with the aluminum bar at temperature of T=1.5 K. The results are compared with those obtained in the previous runs when the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement with the thermo-acoustic model; no large signals at unexpected rate are noticed, unlike the data taken in the run at T = 0.14 K. The observations suggest a larger efficiency in the mechanism of conversion of the particle energy into vibrational mode energy when the aluminum bar is in the superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
    • 

    corecore