5 research outputs found
Proteomic Study of Response to Copper, Cadmium, and Chrome Ion Stress in <i>Yarrowia lipolytica</i> Strains Isolated from Andean Mine Tailings in Peru
Mine tailings are produced by mining activities and contain diverse heavy metal ions, which cause environmental problems and have negative impacts on ecosystems. Different microorganisms, including yeasts, play important roles in the absorption and/or adsorption of these heavy metal ions. This work aimed to analyze proteins synthesized by the yeast Yarrowia lipolytica AMJ6 (Yl-AMJ6), isolated from Andean mine tailings in Peru and subjected to stress conditions with common heavy metal ions. Yeast strains were isolated from high Andean water samples impacted by mine tailings from Yanamate (Pasco, Peru). Among all the isolated yeasts, the Yl-AMJ6 strain presented LC50 values of 1.06 mM, 1.42 mM, and 0.49 mM for the Cr+6, Cu+2, and Cd+2 ions, respectively. Proteomic analysis of theYl-AMJ6 strain under heavy metal stress showed that several proteins were up- or downregulated. Biological and functional analysis of these proteins showed that they were involved in the metabolism of proteins, nucleic acids, and carbohydrates; response to oxidative stress and protein folding; ATP synthesis and ion transport; membrane and cell wall; and cell division. The most prominent proteins that presented the greatest changes were related to the oxidative stress response and carbohydrate metabolism, suggesting the existence of a defense mechanism in these yeasts to resist the impact of environmental contamination by heavy metal ions
In Silico Prediction and Design of Uropathogenic <i>Escherichia coli</i> Alpha-Hemolysin Generate a Soluble and Hemolytic Recombinant Toxin
The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions
Recommended from our members
Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts
Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1Â h, 6Â h, 12Â h, or 24Â h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation.
Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.
[Display omitted]
•C. d. terrificus rattlesnake venom treatment of mice showed changes in cardiac protein profile•C. d. terrificus venom modulated proteins involved in biological and cellular process - C. d. terrificus venom modulated proteins related to molecular function and phenotypic profiles•C. d. terrificus venom modulated Gene Ontology categories related to cardiac cardiac tissue damage•Network analysis showed disturbances of proteins related to cardiac tissue damag
Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide
BACKGROUND: Chemoresistance of glioblastoma multiforme (GBM) has been attributed to the presence within the tumor of cancer stem cells (GSCs). The standard therapy for GBM consists of surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ). However, TMZ efficacy is limited by O6-methylguanine-DNA-methyltransferase (MGMT) and Mismatch Repair (MMR) functions. Strategies to counteract TMZ resistance include its combination with poly(ADP-ribose) polymerase inhibitors (PARPi), which hamper the repair of N-methylpurines. PARPi are also investigated as monotherapy for tumors with deficiency of homologous recombination (HR). We have investigated whether PARPi may restore GSC sensitivity to TMZ or may be effective as monotherapy.
METHODS: Ten human GSC lines were assayed for MMR proteins, MGMT and PARP-1 expression/activity, MGMT promoter methylation and sensitivity to TMZ or PARPi, alone and in combination. Since PTEN defects are frequently detected in GBM and may cause HR dysfunction, PTEN expression was also analyzed. The statistical analysis of the differences in drug sensitivity among the cell lines was performed using the ANOVA and Bonferroni's post-test or the non-parametric Kruskal-Wallis analysis and Dunn's post-test for multiple comparisons. Synergism between TMZ and PARPi was analyzed by the median-effect method of Chou and Talalay. Correlation analyses were done using the Spearman's rank test.
RESULTS: All GSCs were MMR-proficient and resistance to TMZ was mainly associated with high MGMT activity or low proliferation rate. MGMT promoter hypermethylation of GSCs correlated both with low MGMT activity/expression (Spearman's test, P = 0.004 and P = 0.01) and with longer overall survival of GBM patients (P = 0.02). Sensitivity of each GSC line to PARPi as single agent did not correlate with PARP-1 or PTEN expression. Notably, PARPi and TMZ combination exerted synergistic antitumor effects in eight out of ten GSC lines and the TMZ dose reduction achieved significantly correlated with the sensitivity of each cell line to PARPi as single agent (P = 0.01).
CONCLUSIONS: The combination of TMZ with PARPi may represent a valuable strategy to reverse GSC chemoresistance