5,654 research outputs found

    Self-sustained magnetoelectric oscillations in magnetic resonant tunneling structures

    Get PDF
    The dynamic interplay of transport, electrostatic, and magnetic effects in the resonant tunneling through ferromagnetic quantum wells is theoretically investigated. It is shown that the carrier-mediated magnetic order in the ferromagnetic region not only induces, but also takes part in intrinsic, robust, and sustainable high-frequency current oscillations over a large window of nominally steady bias voltages. This phenomenon could spawn a new class of quantum electronic devices based on ferromagnetic semiconductors.Comment: 5 pages, 4 figure

    Resonant Tunneling Magneto Resistance in Coupled Quantum Wells

    Get PDF
    A three barrier resonant tunneling structure in which the two quantum wells are formed by a dilute magnetic semiconductor material (ZnMnSe) with a giant Zeeman splitting of the conduction band is theoretically investigated. Self-consistent numerical simulations of the structure predict giant magnetocurrent in the resonant bias regime as well as significant current spin polarization for a considerable range of applied biases.Comment: 4 pages, 4 figure

    Proposal for a ferromagnetic multiwell spin oscillator

    Full text link
    The highly nonlinear coupling of transport and magnetic properties in a multiwell heterostructure, which comprises ferromagnetic quantum wells made of diluted magnetic semiconductors, is theoretically investigated. The interplay of resonant tunneling and carrier-mediated ferromagnetism in the magnetic wells induces very robust, self-sustained current and magnetization oscillations. Over a large window of steady bias voltages the spin polarization of the collector current is oscillating between positive and negative values, realizing a spin oscillator device.Comment: 3 pages, 4 figure

    Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks

    Full text link
    Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results

    Performance Analysis of Unsupervised LTE Device-to-Device (D2D) Communication

    Full text link
    Cellular network technology based device-to-device communication attracts increasing attention for use cases such as the control of autonomous vehicles on the ground and in the air. LTE provides device-to-device communication options, however, the configuration options are manifold (leading to 150+ possible combinations) and therefore the ideal combination of parameters is hard to find. Depending on the use case, either throughput, reliability or latency constraints may be the primary concern of the service provider. In this work we analyze the impact of different configuration settings of unsupervised LTE device-to-device (sidelink) communication on the system performance. Using a simulative approach we vary the length of the PSCCH period and the number of PSCCH subframes and determine the impact of different combinations of those parameters on the resulting latency, reliability and the interarrival times of the received packets. Furthermore we examine the system limitations by a scalability analysis. In this context, we propose a modified HARQ process to mitigate scalability constraints. Our results show that the proposed reduced HARQ retransmission probability can increase the system performance regarding latency and interarrival times as well as the packet transmission reliability for higher channel utilization

    Regulation of NGN: Structural Separation, Access Regulation, or No Regulation at All?

    Get PDF
    Since the introduction of Next Generation Networks (NGNs) by telecommunication network operators, national regulators have begun to adapt their access regulation regimes to the new technological conditions. The regulatory reactions gravitate towards three distinct regulatory trajectories: unregulated competition, access regulation, and structural separation. We first analyze the extent of market power in access Networks in NGNs from a technological perspective. Second, we use case studies to identify patterns between technological and market conditions and regulators' reactions in selected countries. We find that market power in the access network is likely to prevail. Regulatory reactions differ with the extent of infrastructure competition and the regulators position in the trade-off between promoting investment and protecting competitionNext Generation Network, deregulation, access regulation, structural separation.
    • …
    corecore