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The dynamic interplay of transport, electrostatic, and magnetic effects in the resonant tunneling through
ferromagnetic quantum wells is theoretically investigated. It is shown that the carrier-mediated magnetic
order in the ferromagnetic region not only induces, but also takes part in intrinsic, robust, and sustainable
high-frequency current oscillations over a large window of nominally steady bias voltages. This
phenomenon could spawn a new class of quantum electronic devices based on ferromagnetic
semiconductors.
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Ferromagnetism of diluted magnetic semiconductors
(DMSs), such as GaMnAs [1], depends strongly on the
carrier density [2–5]. The possibility to tailor space charges
in semiconductors by bias or gate fields naturally suggests
similar tailoring of magnetic properties of DMSs. While
early experiments have indeed succeeded in generating
ferromagnetism in DMSs electrically or optically [6,7],
ramifications of the strong carrier-mediated ferromagne-
tism in the transport through DMS heterostructures are
largely unexplored.

In resonant tunneling through a quantum well not only
the tunneling current, but also the carrier density in the well
is sensitive to the alignment of the electronic spectra in the
leads and in the well. If the quantum well is a paramagnetic
DMS, the resulting transport is influenced by the spin
splitting of the carrier bands in the well, as observed
experimentally [8]. The magnetic resonant diodes are
prominent spintronic devices [9], proposed for spin valves
and spin filtering [10,11], or for digital magnetoresistance
[12]. If the quantum well is made of a ferromagnetic DMS
[13,14], resonant tunneling conditions should influence
magnetic ordering as well. It has already been predicted
that the critical temperature Tc of the well can be strongly
modified electrically [15–17]. Here we show that the mag-
netic ordering affects back the tunneling current, in a
peculiar feedback process, leading to interesting dynamic
transport phenomena.

Conventional nonmagnetic resonant-tunneling diodes
can exhibit subtle intrinsic bistability and terahertz current
oscillations [18–21] resulting from the nonlinear feedback
of the stored charge in the quantum well. Interesting phe-
nomena occur also in multiple quantum wells and super-
lattices, in which electric field domains form whose
dynamics leads to current oscillations in the kHz-GHz
range [22]. This effect has been exploited for spin-
dependent transport by incorporating paramagnetic quan-
tum wells [23,24].

In this Letter we introduce a realistic model of a self-
consistently coupled transport, charge, and magnetic dy-
namics and apply it to generic asymmetric resonant diodes
with a ferromagnetic quantum well to predict self-

sustained, stable high-frequency oscillations of the electric
current and quantum well magnetization. We formulate a
qualitative explanation for the appearance of these magne-
toelectric oscillations. In essence, ferromagnetic quantum
wells exhibit a strong nonlinear feedback to the electric
transport, since the ferromagnetic order is itself mediated
by the itinerant carriers. This, together with the Coulomb
interaction which effectively modifies the single electron
electrostatic potential in the well, leads to a strong coupling
of the transport, electric, as well as magnetic properties of
ferromagnetic resonant tunneling structures.

Our model resonant tunneling structure with a ferromag-
netic well made of a DMS material, e.g., GaMnAs, is
sketched in Fig. 1(a). To exhibit magnetoelectric oscilla-
tions the structure needs a built-in energy cutoff, Ecut, of
the emitter tunneling rate. Such an energy cutoff might be
realized by a cascaded left barrier, as shown in Fig. 1(a), by
which the tunneling for carriers with energies smaller than
Ecut is exponentially suppressed, due to the increased
barrier width. Another practical way would be using an
auxiliary resonant tunneling structure in the emitter itself,

FIG. 1 (color online). (a) Schematic scheme of the band profile
of the magnetic double barrier structure. The exchange interac-
tion of the magnetic ions is mediated by the carriers tunneling in
and out of the well. Here, the cutoff of the emitter tunneling rate
is realized by a cascaded left barrier. (b) Equivalent circuit model
of the resonant tunneling structure introducing the emitter and
collector capacitances Ce, Cc and resistances Re, Rc, respec-
tively.
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providing a spectral filter allowing only resonant electrons
to pass through. Yet another possibility would be employ-
ing a hot electron emitter, say using a Schottky barrier, to
emit electrons in a sharply defined energy window.

As we aim to understand the most robust features of the
ferromagnetic resonant tunnel structures, we present a
minimal theoretical model which captures the essential
physics. The longitudinal transport through the system
can be described in terms of sequential tunneling, as the
high densities of magnetic impurities residing in the ferro-
magnetic well will likely cause decoherence of the prop-
agating carries. Based on the transfer Hamiltonian
formalism a master equation for the semiclassical particle
distribution in the well can be derived, as described else-
where [9,25]. We assume that there is only a single reso-
nant well level E0 in the energy range of interest, allowing
us to write the rate equations for the spin-resolved, time-
dependent quantum well particle densities n��t� (� �" , #
� �1=2) as

 

dn�
dt
� �e�E��ne;� � �c�E��nc;� � ��E��n�

�
n� � n0;�

�s
: (1)

Here, �fe;cg denotes the energy-dependent tunneling rate
from the emitter (e) and the collector (c), � � �e � �c
denotes the total tunneling rate, �s stands for the spin
relaxation time in the well, n0;� denotes the quasiequili-
brium particle spin density, and n�;fe;cg are the densities of
particles in the emitter and collector reservoir, respectively,
having the resonant longitudinal energy E�. The spin-split
resonant energies are E� � E0 �Uw � �� withUw being
the electrostatic well potential and � denoting the subband
exchange splitting. The physical meaning of the right side
of Eq. (1) is as follows: the first two terms are the gain
terms, describing tunneling from the emitter and the col-
lector into the well; the third term describes all loss pro-
cesses due to the tunneling out of the well, and the last term
models the spin relaxation in the well. Considering the
Fermi-Dirac distributions in the emitter and the collector,
the particle densities ni;� � D0kBT lnf1� exp���i �
E��=kBT�g, i � �e; c�, with kB denoting Boltzmanns’ con-
stant; T is the lead temperature, �i are the emitter and
collector chemical potentials with �c � �e � eVappl

where Vappl is the applied bias, and D0 � m=2�@2 is the
two-dimensional density of states per spin for carriers with
the effective mass m. The tunneling rates are essentially
given by the overlap of the lead and well wave functions
according to Bardeen’s formula [26]. For high barriers the
rate becomes proportional to the longitudinal momentum
pz of the particles [25], i.e., �e;c / �Ez�

1=2 with Ez denoting
the longitudinal energy.

In the framework of a mean-field model for the carrier-
mediated ferromagnetism in heterostructure systems
[4,5,9], the steady state exchange splitting of the well

subbands is determined by

 �0�Jpd
Z
dznimp�z�j 0�z�j2SBS

�SJpds�n# �n"�j 0�z�j2

kBT

�
:

(2)

Here, Jpd denotes the coupling strength between the im-
purity spin and the carrier spin density (in the case of
GaMnAs, p-like holes couple to the d-like impurity elec-
trons), z is the longitudinal (growth) direction of the struc-
ture, nimp�z� is the impurity density profile,  0�z� labels the
well wave function, BS denotes the Brillouin function of
order S, and S and s � 1=2 are the impurity and particle
spin, respectively. (In the case of Mn impurities S � 5=2).
The expression shows that the well spin-splitting depends
basically on the particle spin polarization � � n" � n# in
the well and the overlap between the wave function and the
impurity band profile. For simplicity, we consider here a
homogenous impurity distribution in the well, which
makes � the determining factor for �0. After a sudden
change of the well spin polarization the magnetic impuri-
ties need some time to respond until the corresponding
mean-field value �0 is established. In the case of GaMnAs,
experimental studies of the magnetization dynamics re-
vealed typical response times of about 100 ps [27]. We
model the magnetization evolution within the relaxation
time approximation, d�=dt � ���� �0�=��, with ��

denoting the well spin-splitting relaxation time.
Finally, to take into account the nonlinear feedback of

the Coulomb interaction of the well charges, we introduce
emitter-well and collector-well capacitances, C �
Ce � Cc according to the equivalent circuit model of a
resonant tunneling diode, as shown in Fig. 1(b). The ca-
pacitances Ce and Cc are determined by the geometrical
dimensions of the barriers and the well [25]. The electro-
static well potential can then be written as Uw � �e2�n�
nback� � CceVappl�=C with e denoting the elementary
charge; nback is the positive background charge (from
magnetic donors) in the well. All the equations are non-
linearly coupled via the resonant well levels E�, making a
numerical solution indispensable.

In the numerical simulations we use generic parameters
assuming a GaMnAs well: m � 0:5m0, "r � 12:9, de �
50 �A, dc � 20 �A, w � 10 �A, �e � 100 meV, nimp �

1:5	 1020 cm�3, Jpd � 0:06 eV nm3, �s � 1t
, �� �

10t
, where de, dc, and w are the emitter barrier, collector
barrier, and quantum well widths, m0 denotes the free
electron mass, and "r is the relative permittivity of the
well. The characteristic time scale t
 is the inverse emitter
tunneling rate at the emitters’ Fermi energy, �t
 �
1=�e��e��, being of the order of picoseconds. For the
well background charge we consider that in GaMnAs the
actual carrier density is only about 10% of the nominal Mn
doping density [28]: nback � 0:1nimp. Our calculations are
performed at T � 4:2 K, which is well below the critical
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temperature of our specific well Tc � 10 K, where we
estimated Tc by using the mean-field result given in
Ref. [17].

Figure 2(a) shows the current-voltage (I-V) character-
istic of the structure. Up to about V � 11 mV the typical
peaked I-V curve of a resonant tunneling diode is obtained.
However, in the voltage range of 11 to 22 meV, which we
will call hereafter the ‘‘unsteady’’ region, the current does
not settle down to a steady state value; instead stable high-
frequency oscillations occur, as shown in Fig. 2(c) for the
applied voltage of V � 12 mV. The current is always
evaluated at the collector side: jc;� � �c�E���n� � nc;��.
Along with the current, oscillations of the well magnetiza-
tion as well as of the spin densities appear, as shown in
Figs. 2(b) and 2(d). Those magnetoelectric oscillations are
the main results of this Letter.

The I-V curve in the unsteady region suggests the exis-
tence of two qualitatively different dynamic modes. In-
deed, comparing the transients in these two voltage regions
reveals that in region I the spin-up level is recurringly
crossing the emitter energy cut off Ecut, as schematically
illustrated in Fig. 3, whereas in region II this is done by the
spin-down level. This insight offers the following explana-
tion for the occurrence of self-sustained oscillations. Take
mode I; the arguments for mode II are similar. The drop-
ping of the spin-up level below the cutoff energy (due to
the increasing exchange splitting) has two implications:
(i) the supply of the emitter spin-up electrons sharply de-

creases. Hence, the total well particle density n � n" � n#
decreases because the spin-up electrons residing in the well
are tunneling out to the collector. A decreased particle
density leads to a decreased electrostatic potential, which
effectively drives the spin-up level even deeper into the
cutoff region. (ii) Since the spin-up electrons are the ma-
jority spins in the well, a decrease of n" implies a decreas-
ing spin polarization � in the well. This causes, via Eq. (2),
a rapid decrease of the subband exchange splitting, bring-
ing the spin-up level back to the emitter supply region. The
spin-up electrons can then tunnel again into the well and
the whole process starts from the beginning, producing the
calculated cycles. The occurrence of these oscillations
needs the concurrent interplay of both the electric and
magnetic feedbacks: the electrostatic feedback acts like
an ‘‘inertia’’ for the oscillations, allowing the spin level
to get deeper into the cutoff region, whereas the magnetic
feedback is required to bring the level back into the emit-
ter’s supply region. The oscillations also need a steep de-
scent in the tunneling rate at the cutoff energy, which is
confirmed in our simulations, where we assumed an ex-
ponential decay of �e for Ez < Ecut.

The typical time scale for the oscillations is made up by
two contributions: (i) the evolution of the well splitting �
in the emitter’s supply region, i.e., the time needed for the
well splitting � to become large enough that one of the spin
levels crosses the cutoff energy, and (ii) the dynamics of �
in the cutoff region. The time scale of contribution (i) can
be estimated to be proportional to ���r� 1�, where r is the
ratio of the well splitting when the cutoff energy is reached
to the initial splitting at the beginning of the cycle, whereas
the dynamics of contribution (ii) is mostly governed by a
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FIG. 2 (color online). (a) Current-voltage (I-V) characteristic
of the investigated structure at the energy cutoff Ecut � 85 meV.
In the unsteady region between 11 to 22 mV intrinsic current
oscillations appear, in which both the maximum and minimum
values of the oscillations are indicated by dashed and solid lines,
respectively. Two different dynamic modes I and II can be
identified. (b) Well splitting � versus applied voltage. In the
unsteady region the maximum (dashed line) and minimum (solid
line) values of the magnetization oscillations are plotted. (c) and
(d) Transients of the spin-resolved current j and the well particle
density n at the applied voltage V � 12 mV and Ecut � 85 meV.
The time is measured in units of t
 (typically some picoseconds).
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FIG. 3 (color online). Explanation for the occurrence of self-
sustained oscillations in the case of mode I. For mode II the
arguments are similar. (a) According to the in-tunneling spin-up
carriers the spin polarization � is increased, giving rise to an
increasing well splitting �. (b) When the spin-up level falls
below the cutoff energy the total particle number decreases and,
hence, also the electrostatic potential Uw does. (c) This pushes
the spin-up level even deeper into the cutoff region leading to a
fast decrease of the spin polarization and consequently of the
well splitting, which brings the spin-up level back to the emit-
ter’s supply region (d), restarting the whole cycle.
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fast rearrangement of the spin densities in the well, which
happens on the order of the tunneling time t
. This is in line
with the numerical result that the oscillation frequency
increases with decreasing ��. In contrast, a decreasing
spin relaxation time, which diminishes more and more
effectively the spin polarization in the well and, hence,
the well splitting, causes a decrease of the frequency.

The fastest magnetoelectric oscillations in our simula-
tions for the generic parameters used exhibit periods of
about 2:5t
 � 5 ps. Importantly, the oscillation frequency
can be modified by varying the applied voltage, as can be
seen in Fig. 4, which displays contour plots of the fre-
quency and the period versus the applied voltage and the
cutoff energy. Two ‘‘islands’’ can be distinguished, corre-
sponding to the two regions of the dynamic modes I and II,
respectively (see Fig. 2). Mode II appears at higher volt-
ages, where the collector chemical potential is already
below the cutoff energy. Both modes are separated by a
crossover region III, in which the oscillations have much
longer periods than on the islands, as can be seen in
Fig. 4(b). The reason for these low-frequency oscillations
is that the initial spin polarization at the beginning of each
cycle is small, yielding a large ratio r. Therefore, it can
take 10–100 times longer that one of the spin levels reaches
Ecut as for modes I or II. The possibility of controlling the
frequency of the magnetoelectric oscillations by electrical
means is especially interesting from the applications point
of view.

We have shown that the charge and magnetization dy-
namics in ferromagnetic tunneling heterostructures are
influenced by the highly nonlinear feedback of both
Coulomb and magnetic couplings on the tunneling trans-
port. The feedback results in high-frequency self-sustained
intrinsic oscillations suggesting applications of ferromag-
netic quantum wells in tunable high-power current
oscillators.
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FIG. 4 (color online). Contour plots of the frequency (a) and
the period (b) of the intrinsic oscillations as a function of the
applied voltage and the cutoff energy Ecut. The two islands of
high-frequency oscillations correspond to the dynamic modes I
and II. They are separated by a crossover region III of high-
period oscillations, which becomes most evident in period con-
tour plot (b).
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