1,409 research outputs found
Stress on Cold Mass Due to the Supporting System of the CMS Coil in the Vacuum Tank
This report contains a verification analysis of the stress on cold mass coming from the supporting system of the CMS coil in the vacuum tank. The need to carry out this analysis is related to the high mechanical requirements for $9 Al-alloy mandrels (218 MPa yield at cryogenic temperature), demanding accurate analysis of the impact of supporting system on cylinder stress
Detailed Field Distribution in CMS Winding
The CMS winding has now arrived at its constructive phase. This means that some practical aspects regarding the winding itself have to be considered, such as the minimum requirement of conductor performance for each layer of each 9 reported in this paper
Status report of the CMS superconducting coil project
The CMS superconducting coil is designed for one of the two large experiments of LHC at CERN. This coil 12.5 m long, 6 m diameter and 2.7 GJ stored energy is a common project of the CMS Collaboration. It is a four-layer coil, equipped with a self-supporting conductor capable of carrying 20 kA to reach the maximum potential field of 4 T. It has been designed with a considerable contribution from CEA- Saclay for the engineering, ETH-Zurich for the conductor, INFN-Genova for the winding and CERN for the general coordination and construction of the ancillaries. The project entered the construction phase one year ago. The civil engineering is well advanced and ready to accept part of the yoke components already built. The coil itself has finished the pre-industrialization phase and the construction is beginning in industry. Most of the important contracts have been awarded and the foreseen schedule is now based on contractual engagements. A quick overview of the features of the project as well as a status report of the main activities are given. (6 refs)
Finite Element Model to Study the Deformations of NbSn Wires for the Next European Dipole (NED)
The Next European Dipole (NED) activity is aimed at the development of a large-aperture, high-field superconducting magnet relying on high-performances NbSn conductors. Part of the NED program is devoted to the mechanical study of a new generation of NbSn wires and to predict and describe their behavior under the severe loading conditions of the cabling process. The deformation resulting from the cabling process was simulated through mechanical analyses by Finite Elements (FE). The ensuing results of FE analyses are presented, allowing the wire behavior under simple uni-axial loads to be described. They are compared to cross section micrographs of deformed wires
Low-field Instabilities in NbSn Multifilamentary Wires: the Possible Role of Unreacted Nb
We report an experimental study aiming to demonstrate the not negligible role of unreacted Nb on the magnetic instabilities in superconducting NbSn multifilamentary wires, observable through partial flux jumps at magnetic field values below 0.5 T. The analysed wires were recently developed for use as dipoles required in future high-energy proton accelerators and are based on powder-in-tube technology. We studied both unreacted (only involving Nb filaments) and reacted wires, finding flux jump instabilities in both cases when performing magnetic measurements. The results can be interpreted on the basis of the critical state model and are coherent with the intrinsic stability criterion
Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements
Coupling losses were studied in composite tapes containing superconducting
material in the form of two separate stacks of densely packed filaments
embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry
is quite favorable for studying the coupling currents and in particular the
role of superconducting bridges between filaments. By using a.c. susceptibility
technique, the electromagnetic losses as function of a.c. magnetic field
amplitude and frequency were measured at the temperature T = 77 K for two tapes
with different matrix composition. The length of samples was varied by
subsequent cutting in order to investigate its influence on the dynamics of
magnetic flux penetration. The geometrical factor which takes into
account the demagnetizing effects was established from a.c. susceptibility data
at low amplitudes. Losses vs frequency dependencies have been found to agree
nicely with the theoretical model developed for round multifilamentary wires.
Applying this model, the effective resistivity of the matrix was determined for
each tape, by using only measured quantities. For the tape with pure silver
matrix its value was found to be larger than what predicted by the theory for
given metal resistivity and filamentary architecture. On the contrary, in the
sample with a Ag/Mg alloy matrix, an effective resistivity much lower than
expected was determined. We explain these discrepancies by taking into account
the properties of the electrical contact of the interface between the
superconducting filaments and the normal matrix. In the case of soft matrix of
pure Ag, this is of poor quality, while the properties of alloy matrix seem to
provoke an extensive creation of intergrowths which can be actually observed in
this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and
Technolog
Finite element stress analysis of the CMS magnet coil
The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.38 m and the aperture is 6.36 m. This is achieved with a 4 layer-5 module superconducting Al-stabilized coil energised at a nominal current of 20 kA. The finite element analysis (FEA) carried out is axisymmetric elasto-plastic. FEA has also been carried out on the suspension system and on the conductor. (8 refs)
NbSn conductor development and characterization for NED
The main purpose of Next European Dipole (NED) project is to design and to build an NbSn ~ 15 T dipole magnet. Due to budget constraints, NED is mainly focused on superconducting cable development and production. In this work, an update is given on the NED conductor development by Alstom-MSA and SMI, which uses, respectively, Internal-Tin-Diffusion and Powder-In-Tube methods, with the aim of reaching a non-copper critical current density of ~ 3000 A/mm2 at 12 T and 4.2 K. Characterization results, including critical current and magnetization data, are presented and discussed, as well, for conductors already developed by both companies for this project. SMI succeeded to produce a strand with 50 µm diameter filaments and with a critical current of ~ 1400 A at 4.2 K and 12 T, corresponding to a non-copper critical current density of ~ 2500 A/mm2. Cabling trials with this strand were successfully carried out at LBNL
- …