17,593 research outputs found

    Variable-speed Generators with Flux Weakening

    Get PDF
    A cost-competitive, permanent-magnet 20 kW generator is designed such that the following criteria are satisfied: an (over) load capability of at least 30 kW over the entire speed range of 60-120 rpm, generator weight of about 550 lbs with a maximum radial stator flux density of 0.82 T at low speed, unity power factor operation, acceptably small synchronous reactances and operation without a gear box. To justify this final design four different generator designs are investigated: the first two designs are studied to obtain a speed range from 20 to 200 rpm employing rotor field weakening, and the latter two are investigated to obtain a maximum speed range of 40 to 160 rpm based on field weakening via the stator excitation. The generator reactances and induced voltages are computed using finite element/difference solutions. Generator losses and efficiencies are presented for all four designs at rated temperature of Tr=120C

    Information Tradeoff Relations for Finite-Strength Quantum Measurements

    Get PDF
    In this paper we give a new way to quantify the folklore notion that quantum measurements bring a disturbance to the system being measured. We consider two observers who initially assign identical mixed-state density operators to a two-state quantum system. The question we address is to what extent one observer can, by measurement, increase the purity of his density operator without affecting the purity of the other observer's. If there were no restrictions on the first observer's measurements, then he could carry this out trivially by measuring the initial density operator's eigenbasis. If, however, the allowed measurements are those of finite strength---i.e., those measurements strictly within the interior of the convex set of all measurements---then the issue becomes significantly more complex. We find that for a large class of such measurements the first observer's purity increases the most precisely when there is some loss of purity for the second observer. More generally the tradeoff between the two purities, when it exists, forms a monotonic relation. This tradeoff has potential application to quantum state control and feedback.Comment: 15 pages, revtex3, 3 eps figure

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0†{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    Pooling quantum states obtained by indirect measurements

    Full text link
    We consider the pooling of quantum states when Alice and Bob both have one part of a tripartite system and, on the basis of measurements on their respective parts, each infers a quantum state for the third part S. We denote the conditioned states which Alice and Bob assign to S by alpha and beta respectively, while the unconditioned state of S is rho. The state assigned by an overseer, who has all the data available to Alice and Bob, is omega. The pooler is told only alpha, beta, and rho. We show that for certain classes of tripartite states, this information is enough for her to reconstruct omega by the formula omega \propto alpha rho^{-1} beta. Specifically, we identify two classes of states for which this pooling formula works: (i) all pure states for which the rank of rho is equal to the product of the ranks of the states of Alice's and Bob's subsystems; (ii) all mixtures of tripartite product states that are mutually orthogonal on S.Comment: Corrected a mistake regarding the scope of our original result. This version to be published in Phys. Rev. A. 6 pages, 1 figur

    Character Formulae and Partition Functions in Higher Dimensional Conformal Field Theory

    Full text link
    A discussion of character formulae for positive energy unitary irreducible representations of the the conformal group is given, employing Verma modules and Weyl group reflections. Product formulae for various conformal group representations are found. These include generalisations of those found by Flato and Fronsdal for SO(3,2). In even dimensions the products for free representations split into two types depending on whether the dimension is divisible by four or not.Comment: 43 pages, uses harvmac,version 2 2 references added, minor typos correcte

    Oscillating Casimir force between impurities in one-dimensional Fermi liquids

    Full text link
    We study the interaction of two localized impurities in a repulsive one-dimensional Fermi liquid via bosonization. In a previous paper [Phys. Rev. A 72, 023616 (2005)], it was shown that at distances much larger than the interparticle spacing the impurities interact through a Casimir-type force mediated by the zero sound phonons of the underlying quantum liquid. Here we extend these results and show that the strength and sign of this Casimir interaction depend sensitively on the impurities separation. These oscillations in the Casimir interaction have the same period as Friedel oscillations. Their maxima correspond to tunneling resonances tuned by the impurities separation.Comment: This paper is a continuation of Phys. Rev. A 72, 023616 (2005). v2: two appendix adde

    Quantum State Disturbance vs. Information Gain: Uncertainty Relations for Quantum Information

    Full text link
    When an observer wants to identify a quantum state, which is known to be one of a given set of non-orthogonal states, the act of observation causes a disturbance to that state. We investigate the tradeoff between the information gain and that disturbance. This issue has important applications in quantum cryptography. The optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable non-orthogonal pure states.Comment: 20 pages, standard LaTeX, four png figures (also available from the authors: [email protected] and [email protected]

    Nonlinear viscoelasticity of metastable complex fluids

    Full text link
    Many metastable complex fluids such as colloidal glasses and gels show distinct nonlinear viscoelasticity with increasing oscillatory-strain amplitude; the storage modulus decreases monotonically as the strain amplitude increases whereas the loss modulus has a distinct peak before it decreases at larger strains. We present a qualitative argument to explain this ubiquitous behavior and use mode coupling theory (MCT) to confirm it. We compare theoretical predictions to the measured nonlinear viscoelasticity in a dense hard sphere colloidal suspensions; reasonable agreement is obtained. The argument given here can be used to obtain new information about linear viscoelasticity of metastable complex fluids from nonlinear strain measurements.Comment: 7 pages, 3 figures, accepted for publication in Europhys. Let

    The Lie Algebraic Significance of Symmetric Informationally Complete Measurements

    Get PDF
    Examples of symmetric informationally complete positive operator valued measures (SIC-POVMs) have been constructed in every dimension less than or equal to 67. However, it remains an open question whether they exist in all finite dimensions. A SIC-POVM is usually thought of as a highly symmetric structure in quantum state space. However, its elements can equally well be regarded as a basis for the Lie algebra gl(d,C). In this paper we examine the resulting structure constants, which are calculated from the traces of the triple products of the SIC-POVM elements and which, it turns out, characterize the SIC-POVM up to unitary equivalence. We show that the structure constants have numerous remarkable properties. In particular we show that the existence of a SIC-POVM in dimension d is equivalent to the existence of a certain structure in the adjoint representation of gl(d,C). We hope that transforming the problem in this way, from a question about quantum state space to a question about Lie algebras, may help to make the existence problem tractable.Comment: 56 page
    • …
    corecore