16 research outputs found
Influence d'une perfusion lipidique intraveineuse sur le taux des acides biliaires sériques totaux chez le sujet sain et chez les malades en nutrition parentérale totale (NPT) prolongée
International audienc
Influence du protocole de renutrition intraveineuse sur la restauration des enzymes microsomiales hépatiques du rat dénutri
International audienc
Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures.
We investigated whether exogenously supplied precursors of bergapten, namely umbelliferone, psoralen and bergaptol, could be utilized to produce bergapten without elicitation in Glehnia littoralis cell suspension cultures. The levels of added psoralen and bergaptol in the medium soon decreased, and this was followed by the detection of bergapten in both culture fluid and cells. Umbelliferone was also incorporated but in this case no bergapten was produced; instead, skimmin, umbelliferone monoglucoside, was detected. To determine whether conversion of psoralen to bergapten was due to enzyme induction by precursor feeding, the transcript accumulations and enzyme activities of bergaptol O-methyltransferase (BMT, EC 2.1.1.69), which catalyzes the last step of bergapten synthesis, and of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), which catalyzes the initial step of the phenylpropanoid biosynthetic pathway and is known as a marker enzyme of elicitation, were examined. The results showed that both the expression and the activity of BMT were always detected in all cells, including control cells. Since PAL was slightly induced in the cells supplied with/without precursors, phenylethyl alcohol (PEA, a competitive inhibitor of PAL) was applied to suspension cells prior to the addition of psoralen. PAL activity was effectively inhibited by PEA at 1-5 mM concentrations. Under these conditions, PEA did not affect bergapten production by cell cultures fed with psoralen at all. These results demonstrate that BMT is constitutively expressed in G. littoralis cell cultures
Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial
<p>Abstract</p> <p>Background</p> <p>Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS) on training tolerance, training effect, and stress-recovery state.</p> <p>Methods</p> <p>Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session). Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9), branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12) or isocaloric placebo (control group, n = 12) daily.</p> <p>Results</p> <p>The 4<sup>th</sup> week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, P<0.05) and the BCKA group (158 ± 35, 390 ± 29 and 273 ± 47, P<0.05) than in the control group (92 ± 70, 381 ± 67 and 233 ± 43). The general stress and emotional exhaustion as assessed by the rest-stress-questionnaire-sport after the 3<sup>rd</sup> week of training increased significantly in the control group (P<0.05), but not in the KAS groups.</p> <p>Conclusions</p> <p>Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.</p