429 research outputs found
A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3.
n/
PINK1 homozygous W437X mutation in a patient with apparent dominant transmission of parkinsonism.
We analyzed the PINK1 gene in 58 patients with early-onset Parkinsonism and detected the homozygous mutation W437X in 1 patient. The clinical phenotype was characterized by early onset (22 years of age), good re- sponse to levodopa, early fluctuations and dyskinesias, and psychiatric symptoms. The mother, heterozygote for W437X mutation, was affected by Parkinson’s disease and 3 further relatives were reported affected, according to an autosomal dominant transmission
A novel mutation in SACS gene in a family from southern Italy
A form of autosomal recessive spastic ataxia (ARSACS) has been described in the
Charlevoix and Saguenay regions of Quebec. So far a frameshift and a nonsense
mutation have been identified in the SACS gene. The authors report a new mutation
(1859insC), leading to a frameshift with a premature termination of the gene
product sacsin, in two sisters from consanguineous parents. The phenotype is
similar to previously described patients with ARSACS
Complex phenotype in an Italian family with a novel mutation in SPG3A.
Mutations in the SPG3A gene represent a significant cause of autosomal dominant hereditary spastic paraplegia with early onset and pure phenotype. We describe an Italian family manifesting a complex phenotype, characterized by cerebellar
involvement in the proband and amyotrophic lateral sclerosis-like syndrome in her father, in association with a new mutation in SPG3A. Our findings further widen the notion of clinical heterogeneity in SPG3A mutations
Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study
BACKGROUND: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by
onset between age 10 and 22 years, cerebellar atrophy, peripheral neuropathy,
oculomotor apraxia (OMA), and elevated serum alpha-fetoprotein (AFP) levels.
Recessive mutations in SETX have been described in AOA2 patients.
OBJECTIVE: To describe the clinical features of AOA2 and to identify the SETX
mutations in 10 patients from four Italian families.
METHODS: The patients underwent clinical examination, routine laboratory tests,
nerve conduction studies, sural nerve biopsy, and brain MRI. All were screened
for SETX mutations.
RESULTS: All the patients had cerebellar features, including limb and truncal
ataxia, and slurred speech. OMA was observed in two patients, extrapyramidal
symptoms in two, and mental impairment in three. High serum AFP levels, motor and
sensory axonal neuropathy, and marked cerebellar atrophy on MRI were detected in
all the patients who underwent these examinations. Sural nerve biopsy revealed a
severe depletion of large myelinated fibers in one patient, and both large and
small myelinated fibers in another. Postmortem findings are also reported in one
of the patients. Four different homozygous SETX mutations were found (a
large-scale deletion, a missense change, a single-base deletion, and a
splice-site mutation).
CONCLUSIONS: The clinical phenotype of oculomotor apraxia type 2 is fairly
homogeneous, showing only subtle intrafamilial variability. OMA is an inconstant
finding. The identification of new mutations expands the array of SETX variants,
and the finding of a missense change outside the helicase domain suggests the
existence of at least one more functional region in the N-terminus of senataxin
Epoetin alfa increases frataxin production in Friedreich's ataxia without affecting hematocrit.
Objective of the study was to test the efficacy, safety, and tolerability of two single doses of Epoetin alfa in patients with Friedreich's ataxia. Ten patients were treated subcutaneously with 600 IU/kg for the first dose, and 3 months later with 1200 IU/kg. Epoetin alfa had no acute effect on frataxin, whereas a delayed and sustained increase in frataxin was evident at 3 months after the first dose (+35%; P < 0.05), and up to 6 months after the second dose (+54%; P < 0.001). The treatment was well tolerated and did not affect hematocrit, cardiac function, and neurological scale. Single high dose of Epoetin alfa can produce a considerably larger and sustained effect when compared with low doses and repeated administration schemes previously adopted. In addition, no hemoglobin increase was observed, and none of our patients required phlebotomy, indicating lack of erythropoietic effect of single high dose of erythropoietin. © 2010 Movement Disorder Society
Benign hereditary chorea: clinical and neuroimaging features in an Italian family.
Abstract: Benign hereditary chorea is an autosomal domi- nant disorder characterized by early onset nonprogressive chorea, caused by mutations of the thyroid transcription factor-1 (TITF-1) gene. Clinical heterogeneity has been reported and thyroid and respiratory abnormalities may be present. We describe 3 patients of an Italian family carrying the S145X mutation in the TITF-1 gene with mild motor delay, childhood onset dyskinesias, and subtle cognitive impairment. A child in the third generation pre- sented with congenital hypothyroidism and neonatal respi- ratory distress. Imaging studies in 2 patients showed mild ventricular enlargement and empty sella at magnetic reso- nance imaging and hypometabolism of basal ganglia and cortex at 18-Fluoro-2-deoxy-glucose positron emission tomography
Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus
callosum (TCC) is a common and clinically distinct form of familial spastic
paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected
families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval
and identified ten mutations in a previously unidentified gene expressed
ubiquitously in the nervous system but most prominently in the cerebellum,
cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense
or insertions and deletions leading to a frameshift, suggesting a
loss-of-function mechanism. The identification of the function of the gene will
provide insight into the mechanisms leading to the degeneration of the
corticospinal tract and other brain structures in this frequent form of ARHSP
- …
