27 research outputs found

    Trophic structure of a neotropical frugivore community: is there competition between birds and bats?

    Full text link
    Dietary overlap and competition between frugivorous birds and bats in the Neotropics have been presumed to be low, but comparative data have been lacking. We determined the diets of volant frugivores in an early successional patch of Costa Rican wet forest over a one month period. Ordination of the diet matrix by Reciprocal Averaging revealed that birds and bats tend to feed on different sets of fruits and that diets differed more among bat species than among bird species. However, there was overlap between Scarlet-rumped Tanagers and three Carollia bat species on fruits of several Piper species which comprised most of the diet of these bats. Day/night exclosure experiments on P. friedrichsthalli treetlets provided evidence that birds deplete the amount of ripe fruit available to bats. These results indicate that distantly related taxa may overlap in diet and compete for fruit, despite the apparent adaptation of animal-dispersed plant species for dispersal by particular animal taxa.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47779/1/442_2004_Article_BF00384321.pd

    Australian Waterfowl Do Not Necessarily Breed on a Rising Water Level

    No full text

    Breeding, Moult and Food of the Squatter Pigeon in North-Eastern Queensland.

    No full text

    The Ecology of Fruit Pigeons in Tropical Northern Queensland.

    No full text

    Feral Pigs, Rainforest Conservation and Exotic Disease in North Queensland.

    No full text

    Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus

    No full text
    Iridescent colour, caused by physical effects (thin-film interference, diffraction and Tyndall scattering), is relatively common in animals but exceedingly rare among plants1. Some benthic marine algae produce blue to violet iridescence2,3, and the upper leaf surfaces of a few vascular plants from the shady environments of humid tropical forests are iridescent blue4–6. Blue fruit colour has been assumed to be caused by anthocyanins7. A survey of such fruits (26 species in 18 genera) in Costa Rica, India, Florida and Malaysia, showed this to be the case, except for the iridescent colour in fruits of Elaeocarpus angustifolius Blume (Elaeocarpaceae). There I show that the colour is caused by a remarkable structure in the epidermis, and provide evidence for its selective advantage
    corecore