20 research outputs found

    Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression

    Get PDF
    BACKGROUND: Cyclooxygenase (COX) is the rate-limiting enzyme that catalyzes the formation of prostaglandins. The inducible isoform of COX (COX-2) is highly expressed in aggressive metastatic breast cancers and may play a critical role in cancer progression (i.e. growth and metastasis). However, the exact mechanism(s) for COX-2-enhanced metastasis has yet to be clearly defined. It is well established that one of the direct results of COX-2 action is increased prostaglandin production, especially prostaglandin E(2 )(PGE(2)). Here, we correlate the inhibition of COX-2 activity with decreased breast cancer cell proliferation, migration, invasion and matrix metalloproteinase (MMP) expression. METHODS: Breast cancer cells (Hs578T, MDA-MB-231 and MCF-7) were treated with selective COX-2 inhibitors (NS-398 and Niflumic acid, NA). Cell proliferation was measured by staining with erythrosin B and counting the viable cells using a hemacytometer. Cell migration and invasion were measured using migration and invasion chamber systems. MMP expression was determined by enzyme immunoassay (secreted protein) and real-time quantitative polymerase chain reaction (mRNA). RESULTS: Our results show that there is a decline in proliferation, migration and invasion by the Hs578T and MDA-MB-231 breast cancer cell lines in the presence of either low concentrations (1 μM or lower) NA or NS-398. We also report that MMP mRNA and protein expression by Hs578T cells is inhibited by NS-398; there was a 50% decrease by 100 μM NS-398. PGE(2 )completely reversed the inhibitory effect of NS-398 on MMP mRNA expression. CONCLUSION: Our data suggests that COX-2-dependent activity is a necessary component for cellular and molecular mechanisms of breast cancer cell motility and invasion. COX-2 activity also modulates the expression of MMPs, which may be a part of the molecular mechanism by which COX-2 promotes cell invasion and migration. The studies suggest that COX-2 assists in determining and defining the metastatic signaling pathways that promote the breast cancer progression to metastasis

    Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura

    Get PDF
    Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK

    Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion

    Get PDF
    Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS

    Paeonia japonica

    No full text
    corecore