5 research outputs found

    An integrated modelling framework to assess cascade water reuse in urban areas

    Get PDF
    In the recent years water scarcity has been an increasing problem for many countries worldwide. For this reason, there is currently a strong focus on increasing reclaimed wastewater reuse, especially for agriculture purposes (Fernandes and Cunha Marques, 2023). Besides, the cost of energy from conventional resources is increasing, thus the energy sector is moving towards more distributed and efficient use of heat sources across urban areas. Typical applications are heat pumps using local groundwater reservoirs and subsequently discharging in the nearby surface water bodies/artificial channels (recipients). Furthermore, for a better quality of these recipients and for a better performance of wastewater treatment plants (WWTP), stormwater can be collected in separated sewers discharging only the urban runoff to the recipient. In this context, water is subjected to multiple uses, with potential cross-contaminations across different compartments, posing a risk for the environment. Hence, there is a strong need for tools capable of supporting stakeholders towards a wiser and safer use of water resources, to ensure long-term resilience, stability, sustainability and security of the society with regard to water use. An integrated model was developed to simulate the fate and associated risk of hazardous contaminants in a cascade water reuse system

    An integrated modelling framework to assess cascade water reuse in urban areas

    No full text
    Water scarcity is an increasing problem for many countries worldwide, and the need for sustainable management of water resources is an urgent concern to face rising environmental challenges (Fernandes and Cunha Marques, 2023). This has prompted a rethink of water resources management and the reuse of water has gain growing interest. There is currently a strong focus on increasing reclaimed wastewater reuse, especially for agriculture (Delli Compagni et al., 2020). Besides, the ever-increasing costs associated with conventional energy sources have impelled the energy sector to transition towards more distributed and efficient energy production for heating/cooling purposes by exploiting local sources, especially across urban areas (Valancius et al., 2019). Typical applications are heat pumps using local groundwater reservoirs, and subsequently discharging the withdrawn water into the nearby surface water recipients, being natural or artificial water channels. Moreover, to enhance the water quality of these recipients and optimize the capacity of wastewater treatment plants (WWTPs), stormwater can be collected in separated sewers, discharging only the urban runoff to the recipient (Pálfy et al., 2017). In this context of rethinking the water management of urban areas, potential cross-contaminations across different compartments can occur, posing a risk for the environment, especially if water is subjected to multiple (re)uses (e.g. water from the recipient used for crop irrigation). Hence, there is a strong need for tools capable of supporting stakeholders towards a wiser and safer use of water resources, to ensure long-term resilience, stability, sustainability and security of the society with regard to water (re)use.In this work, an integrated model was developed to simulate the fate and associated risk of hazardous contaminants in a cascade water reuse system, located in the city of Milan. The model allows the evaluation of the feasibility of future water management strategies based on the risk assessment

    Rubella natural immunity among adolescent girls in Tanzania: the need to vaccinate child bearing aged women

    No full text
    Abstract Background Rubella primary infection during early stages of pregnancy is associated with high risk of congenital Rubella syndrome (CRS). Prevention of CRS in the resource-limited countries requires multiple strategies. Here, we document the data on the magnitude of Rubella natural immunity among adolescent girls which is a crucial group in devising effective control strategies to prevent CRS. Methods A cross sectional study involving 397 adolescent girls was conducted in the city of Mwanza involving five secondary schools. Socio-demographic and other relevant information were collected using pre-tested data collection tool. Rubella IgG antibodies were determined using enzyme immunoassay. The presence of Rubella IgG titers of >10 IU/ml indicated natural immunity. Results The mean age of the study participants was 15.18 ± 1.48 years. Of 397 girls, 340 (85.6%) and 57 (14.4%) were from secondary schools representing peri-urban and rural areas, respectively. Out of 397 girls, 90.4% (95% CI: 87-93) were found to be naturally immune with median Rubella IgG antibodies titers of 56.7 IU/ml interquartile range (IQR): 40.8-137. The median Rubella IgG antibodies titers were significantly high in adolescent girls from families with high socio-economic status (63.96 vs. 47.13 IU/ml, P < 0.001) and in adolescent girls from peri-urban areas of the city (63.33 vs. 39.9 IU/ml, P < 0.001). Conclusion The majority of adolescent girls in the city of Mwanza are naturally immune to Rubella virus. There is a need to compare the effectiveness of screening and vaccinating susceptible adolescent girls with the effectiveness of vaccinating all women of childbearing in controlling CRS in low-income countries
    corecore