2,740 research outputs found

    The Kohn-Luttinger Effect in Gauge Theories

    Get PDF
    Kohn and Luttinger showed that a many body system of fermions interacting via short range forces becomes superfluid even if the interaction is repulsive in all partial waves. In gauge theories such as QCD the interaction between fermions is long range and the assumptions of Kohn and Luttinger are not satisfied. We show that in a U(1) gauge theory the Kohn-Luttinger phenomenon does not take place. In QCD attractive channels always exist, but there are cases in which the primary pairing channel leaves some fermions ungapped. As an example we consider the unpaired fermion in the 2SC phase of QCD with two flavors. We show that it acquires a very small gap via a mechanism analogous to the Kohn-Luttinger effect. The gap is too small to be phenomenologically relevant.Comment: 5 pages, 2 figure, minor revisions, to appear in PR

    High temperature limit in static backgrounds

    Get PDF
    We prove that the hard thermal loop contribution to static thermal amplitudes can be obtained by setting all the external four-momenta to zero before performing the Matsubara sums and loop integrals. At the one-loop order we do an iterative procedure for all the 1PI one-loop diagrams and at the two-loop order we consider the self-energy. Our approach is sufficiently general to the extent that it includes theories with any kind of interaction vertices, such as gravity in the weak field approximation, for dd space-time dimensions. This result is valid whenever the external fields are all bosonic.Comment: 15 pages, 11 figures. To be published in Physical Review

    An analytical expression of the asymptotic QED cross-section of four lepton two pair production in γγ collisions

    Get PDF
    AbstractFor the first time we have obtained an analytical QED asymptotic formula for the γγ production of two lepton pair with equal or unequal masses

    Thermal Effective Lagrangian of Static Gravitational Fields

    Get PDF
    We compute the effective Lagrangian of static gravitational fields interacting with thermal fields. Our approach employs the usual imaginary time formalism as well as the equivalence between the static and space-time independent external gravitational fields. This allows to obtain a closed form expression for the thermal effective Lagrangian in dd space-time dimensions.Comment: Accepted for publication in the Physical Review

    Early Time Evolution of High Energy Heavy Ion Collisions

    Get PDF
    We solve the Yang-Mills equations in the framework of the McLerran-Venugopalan model for small times tau after a collision of two nuclei. An analytic expansion around tau=0 leads to explicit results for the field strength and the energy momentum tensor of the gluon field at early times. We then discuss constraints for the energy density, pressure and flow of the plasma phase that emerges after thermalization of the gluon field.Comment: 4 pages, 1 figure; contribution to Quark Matter 2006; submitted to J. Phys.

    Thermal rates for baryon and anti-baryon production

    Get PDF
    We use a form of the fluctuation-dissipation theorem to derive formulas giving the rate of production of spin-1/2 baryons in terms of the fluctuations of either meson or quark fields. The most general formulas do not assume thermal or chemical equilibrium. When evaluated in a thermal ensemble we find equilibration times on the order of 10 fm/c near the critical temperature in QCD.Comment: 22 pages, 4 tables and 2 figures, REVTe

    Bottom-Up Approach to Moduli Dynamics in Heavy Gravitino Scenario : Superpotential, Soft Terms and Sparticle Mass Spectrum

    Full text link
    The physics of moduli fields is examined in the scenario where the gravitino is relatively heavy with mass of order 10 TeV, which is favored in view of the severe gravitino problem. The form of the moduli superpotential is shown to be determined, if one imposes a phenomenological requirement that no physical CP phase arise in gaugino masses from conformal anomaly mediation. This bottom-up approach allows only two types of superpotential, each of which can have its origins in a fundamental underlying theory such as superstring. One superpotential is the sum of an exponential and a constant, which is identical to that obtained by Kachru et al (KKLT), and the other is the racetrack superpotential with two exponentials. The general form of soft supersymmetry breaking masses is derived, and the pattern of the superparticle mass spectrum in the minimal supersymmetric standard model is discussed with the KKLT-type superpotential. It is shown that the moduli mediation and the anomaly mediation make comparable contributions to the soft masses. At the weak scale, the gaugino masses are rather degenerate compared to the minimal supergravity, which bring characteristic features on the superparticle masses. In particular, the lightest neutralino, which often constitutes the lightest superparticle and thus a dark matter candidate, is a considerable admixture of gauginos and higgsinos. We also find a small mass hierarchy among the moduli, gravitino, and superpartners of the standard-model fields. Cosmological implications of the scenario are briefly described.Comment: 45 pages, 10 figures, typos correcte

    Shear Viscosities from the Chapman-Enskog and the Relaxation Time Approaches

    Full text link
    The interpretation of the measured elliptic and higher order collective flows in heavy-ion collisions in terms of viscous hydrodynamics depends sensitively on the ratio of shear viscosity to entropy density. Here we perform a quantitative comparison between the results of shear viscosities from the Chapman-Enskog and relaxation time methods for selected test cases with specified elastic differential cross sections: (i) The non-relativistic, relativistic and ultra-relativistic hard sphere gas with angle and energy independent differential cross section (ii) The Maxwell gas, (iii) chiral pions and (iv) massive pions for which the differential elastic cross section is taken from experiments. Our quantitative results reveal that (i) the extent of agreement (or disagreement) depends sensitively on the energy dependence of the differential cross sections employed, and (ii) stress the need to perform quantum molecular dynamical (URQMD) simulations that employ Green-Kubo techniques with similar cross sections to validate the codes employed and to test the accuracy of other methods.Comment: To be submitted to PR

    Low-Temperature Properties of Two-Dimensional Ideal Ferromagnets

    Full text link
    The manifestation of the spin-wave interaction in the low-temperature series of the partition function has been investigated extensively over more than seven decades in the case of the three-dimensional ferromagnet. Surprisingly, the same problem regarding ferromagnets in two spatial dimensions, to the best of our knowledge, has never been addressed in a systematic way so far. In the present paper the low-temperature properties of two-dimensional ideal ferromagnets are analyzed within the model-independent method of effective Lagrangians. The low-temperature expansion of the partition function is evaluated up to two-loop order and the general structure of this series is discussed, including the effect of a weak external magnetic field. Our results apply to two-dimensional ideal ferromagnets which exhibit a spontaneously broken spin rotation symmetry O(3) \to O(2) and are defined on a square, honeycomb, triangular or Kagom\'e lattice. Remarkably, the spin-wave interaction only sets in at three-loop order. In particular, there is no interaction term of order T3T^3 in the low-temperature series for the free energy density. This is the analog of the statement that, in the case of three-dimensional ferromagnets, there is no interaction term of order T4T^4 in the free energy density. We also provide a careful discussion of the implications of the Mermin-Wagner theorem in the present context and thereby put our low-temperature expansions on safe grounds.Comment: 24 pages, 3 figure

    Strong Couplings of X(3872)_{J=1,2} and a New Look at J/psi Suppression in Heavy Ion Collisions

    Full text link
    We define and compute from data the strong couplings of the X(3872) with both of the possible quantum numbers assignments J^{PC}=1^{++},2^{-+}. We use these to compute cross sections for J/psi resonance scattering into D Dbar*. As an application of the results obtained we revise the calculation of the J/psi absorption in a hot hadron gas to confront with recent RHIC observations in Au-Au collisions.Comment: 23 pages, 18 figures, 4 table
    corecore