2,740 research outputs found
The Kohn-Luttinger Effect in Gauge Theories
Kohn and Luttinger showed that a many body system of fermions interacting via
short range forces becomes superfluid even if the interaction is repulsive in
all partial waves. In gauge theories such as QCD the interaction between
fermions is long range and the assumptions of Kohn and Luttinger are not
satisfied. We show that in a U(1) gauge theory the Kohn-Luttinger phenomenon
does not take place. In QCD attractive channels always exist, but there are
cases in which the primary pairing channel leaves some fermions ungapped. As an
example we consider the unpaired fermion in the 2SC phase of QCD with two
flavors. We show that it acquires a very small gap via a mechanism analogous to
the Kohn-Luttinger effect. The gap is too small to be phenomenologically
relevant.Comment: 5 pages, 2 figure, minor revisions, to appear in PR
High temperature limit in static backgrounds
We prove that the hard thermal loop contribution to static thermal amplitudes
can be obtained by setting all the external four-momenta to zero before
performing the Matsubara sums and loop integrals. At the one-loop order we do
an iterative procedure for all the 1PI one-loop diagrams and at the two-loop
order we consider the self-energy. Our approach is sufficiently general to the
extent that it includes theories with any kind of interaction vertices, such as
gravity in the weak field approximation, for space-time dimensions. This
result is valid whenever the external fields are all bosonic.Comment: 15 pages, 11 figures. To be published in Physical Review
An analytical expression of the asymptotic QED cross-section of four lepton two pair production in γγ collisions
AbstractFor the first time we have obtained an analytical QED asymptotic formula for the γγ production of two lepton pair with equal or unequal masses
Thermal Effective Lagrangian of Static Gravitational Fields
We compute the effective Lagrangian of static gravitational fields
interacting with thermal fields. Our approach employs the usual imaginary time
formalism as well as the equivalence between the static and space-time
independent external gravitational fields. This allows to obtain a closed form
expression for the thermal effective Lagrangian in space-time dimensions.Comment: Accepted for publication in the Physical Review
Early Time Evolution of High Energy Heavy Ion Collisions
We solve the Yang-Mills equations in the framework of the
McLerran-Venugopalan model for small times tau after a collision of two nuclei.
An analytic expansion around tau=0 leads to explicit results for the field
strength and the energy momentum tensor of the gluon field at early times. We
then discuss constraints for the energy density, pressure and flow of the
plasma phase that emerges after thermalization of the gluon field.Comment: 4 pages, 1 figure; contribution to Quark Matter 2006; submitted to J.
Phys.
Thermal rates for baryon and anti-baryon production
We use a form of the fluctuation-dissipation theorem to derive formulas
giving the rate of production of spin-1/2 baryons in terms of the fluctuations
of either meson or quark fields. The most general formulas do not assume
thermal or chemical equilibrium. When evaluated in a thermal ensemble we find
equilibration times on the order of 10 fm/c near the critical temperature in
QCD.Comment: 22 pages, 4 tables and 2 figures, REVTe
Bottom-Up Approach to Moduli Dynamics in Heavy Gravitino Scenario : Superpotential, Soft Terms and Sparticle Mass Spectrum
The physics of moduli fields is examined in the scenario where the gravitino
is relatively heavy with mass of order 10 TeV, which is favored in view of the
severe gravitino problem. The form of the moduli superpotential is shown to be
determined, if one imposes a phenomenological requirement that no physical CP
phase arise in gaugino masses from conformal anomaly mediation. This bottom-up
approach allows only two types of superpotential, each of which can have its
origins in a fundamental underlying theory such as superstring. One
superpotential is the sum of an exponential and a constant, which is identical
to that obtained by Kachru et al (KKLT), and the other is the racetrack
superpotential with two exponentials. The general form of soft supersymmetry
breaking masses is derived, and the pattern of the superparticle mass spectrum
in the minimal supersymmetric standard model is discussed with the KKLT-type
superpotential. It is shown that the moduli mediation and the anomaly mediation
make comparable contributions to the soft masses. At the weak scale, the
gaugino masses are rather degenerate compared to the minimal supergravity,
which bring characteristic features on the superparticle masses. In particular,
the lightest neutralino, which often constitutes the lightest superparticle and
thus a dark matter candidate, is a considerable admixture of gauginos and
higgsinos. We also find a small mass hierarchy among the moduli, gravitino, and
superpartners of the standard-model fields. Cosmological implications of the
scenario are briefly described.Comment: 45 pages, 10 figures, typos correcte
Shear Viscosities from the Chapman-Enskog and the Relaxation Time Approaches
The interpretation of the measured elliptic and higher order collective flows
in heavy-ion collisions in terms of viscous hydrodynamics depends sensitively
on the ratio of shear viscosity to entropy density. Here we perform a
quantitative comparison between the results of shear viscosities from the
Chapman-Enskog and relaxation time methods for selected test cases with
specified elastic differential cross sections: (i) The non-relativistic,
relativistic and ultra-relativistic hard sphere gas with angle and energy
independent differential cross section (ii) The Maxwell gas, (iii) chiral pions
and (iv) massive pions for which the differential elastic cross section is
taken from experiments. Our quantitative results reveal that (i) the extent of
agreement (or disagreement) depends sensitively on the energy dependence of the
differential cross sections employed, and (ii) stress the need to perform
quantum molecular dynamical (URQMD) simulations that employ Green-Kubo
techniques with similar cross sections to validate the codes employed and to
test the accuracy of other methods.Comment: To be submitted to PR
Low-Temperature Properties of Two-Dimensional Ideal Ferromagnets
The manifestation of the spin-wave interaction in the low-temperature series
of the partition function has been investigated extensively over more than
seven decades in the case of the three-dimensional ferromagnet. Surprisingly,
the same problem regarding ferromagnets in two spatial dimensions, to the best
of our knowledge, has never been addressed in a systematic way so far. In the
present paper the low-temperature properties of two-dimensional ideal
ferromagnets are analyzed within the model-independent method of effective
Lagrangians. The low-temperature expansion of the partition function is
evaluated up to two-loop order and the general structure of this series is
discussed, including the effect of a weak external magnetic field. Our results
apply to two-dimensional ideal ferromagnets which exhibit a spontaneously
broken spin rotation symmetry O(3) O(2) and are defined on a square,
honeycomb, triangular or Kagom\'e lattice. Remarkably, the spin-wave
interaction only sets in at three-loop order. In particular, there is no
interaction term of order in the low-temperature series for the free
energy density. This is the analog of the statement that, in the case of
three-dimensional ferromagnets, there is no interaction term of order in
the free energy density. We also provide a careful discussion of the
implications of the Mermin-Wagner theorem in the present context and thereby
put our low-temperature expansions on safe grounds.Comment: 24 pages, 3 figure
Strong Couplings of X(3872)_{J=1,2} and a New Look at J/psi Suppression in Heavy Ion Collisions
We define and compute from data the strong couplings of the X(3872) with both
of the possible quantum numbers assignments J^{PC}=1^{++},2^{-+}. We use these
to compute cross sections for J/psi resonance scattering into D Dbar*. As an
application of the results obtained we revise the calculation of the J/psi
absorption in a hot hadron gas to confront with recent RHIC observations in
Au-Au collisions.Comment: 23 pages, 18 figures, 4 table
- …