30 research outputs found
Synthesis and characterization of dextran esters as coating or matrix systems for oral delivery of drugs targeted to the colon
Different dextran esters with various degrees of substitution (1, 2 and 3) were synthesized by esterification reaction, with three acid anhydrides: acetic anhydride, propionic anhydride, and butyric anhydride, separately. These modified polysaccharides were characterized by FT-IR, 1H NMR and 13C NMR spectroscopies. Enzymatic degradation of biopolymers by dextranase was also studied. The polymers showing the best degradation profiles were chosen to design blended free films in combination with a polymethacrylate (Eudragit® RS 30D) as a sustained release system for targeting to the colon. These free films were evaluated by permeability of theophylline used as tracer in different in vitro media of the gastro intestinal tract, in presence or in absence of dextranase. From these studies, it was concluded that dextran esters having the lower degree of substitution and constituted of short carbohydrate chains showed the best and significant enzymatic degradation and could be used as a promising carrier for specific colon drug delivery system.Keywords: Colon-Specific Drug Delivery; Polysaccharides; Dextran; Dextranase; Dextran esters; Enzymatic Degradation; Eudragit® RS 30D; Sid-by-side diffusion cel
Academic Performance and Behavioral Patterns
Identifying the factors that influence academic performance is an essential
part of educational research. Previous studies have documented the importance
of personality traits, class attendance, and social network structure. Because
most of these analyses were based on a single behavioral aspect and/or small
sample sizes, there is currently no quantification of the interplay of these
factors. Here, we study the academic performance among a cohort of 538
undergraduate students forming a single, densely connected social network. Our
work is based on data collected using smartphones, which the students used as
their primary phones for two years. The availability of multi-channel data from
a single population allows us to directly compare the explanatory power of
individual and social characteristics. We find that the most informative
indicators of performance are based on social ties and that network indicators
result in better model performance than individual characteristics (including
both personality and class attendance). We confirm earlier findings that class
attendance is the most important predictor among individual characteristics.
Finally, our results suggest the presence of strong homophily and/or peer
effects among university students
Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales)
BACKGROUND: The epsilon proteobacteria, which include many important human pathogens, are presently recognized solely on the basis of their branching in rRNA trees. No unique molecular or biochemical characteristics specific for this group are known. RESULTS: Comparative analyses of proteins in the genomes of Wolinella succinogenes DSM 1740 and Campylobacter jejuni RM1221 against all available sequences have identified a large number of proteins that are unique to various epsilon proteobacteria (Campylobacterales), but whose homologs are not detected in other organisms. Of these proteins, 49 are uniquely found in nearly all sequenced epsilon-proteobacteria (viz. Helicobacter pylori (26695 and J99), H. hepaticus, C. jejuni (NCTC 11168, RM1221, HB93-13, 84-25, CF93-6, 260.94, 11168 and 81-176), C. lari, C. coli, C. upsaliensis, C. fetus, W. succinogenes DSM 1740 and Thiomicrospira denitrificans ATCC 33889), 11 are unique for the Wolinella and Helicobacter species (i.e. Helicobacteraceae family) and many others are specific for either some or all of the species within the Campylobacter genus. The primary sequences of many of these proteins are highly conserved and provide novel resources for diagnostics and therapeutics. We also report four conserved indels (i.e. inserts or deletions) in widely distributed proteins (viz. B subunit of exinuclease ABC, phenylalanyl-tRNA synthetase, RNA polymerase β '-subunit and FtsH protein) that are specific for either all epsilon proteobacteria or different subgroups. In addition, a rare genetic event that caused fusion of the genes for the largest subunits of RNA polymerase (rpoB and rpoC) in Wolinella and Helicobacter is also described. The inter-relationships amongst Campylobacterales as deduced from these molecular signatures are in accordance with the phylogenetic trees based on the 16S rRNA and concatenated sequences for nine conserved proteins. CONCLUSION: These molecular signatures provide novel tools for identifying and circumscribing species from the Campylobacterales order and its subgroups in molecular terms. Although sequence information for these signatures is presently limited to Campylobacterales species, it is likely that many of them will also be found in other epsilon proteobacteria. Functional studies on these proteins and conserved indels should reveal novel biochemical or physiological characteristics that are unique to these groups of epsilon proteobacteria
Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes
The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy
Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper
Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture