3,592 research outputs found
The magnetic field of Mercury
Data from Mariner 10 observations of Mercury indicate that there exists an intrinsic magnetic field of the planet, sufficiently strong at present to deflect the solar wind flow around the planet and to form a detached bow shock wave in the super Alfvenic solar wind. Four methods used to analyze the magnetic field data and derive quantitative values for the description of the planetary field include (1) comparison of bow shock and magnetopause relative positions at Mercury to those at Earth; (2) direct spherical harmonic analysis of the data; (3) modeling of the magnetosphere by an image dipole and infinite 2-D current sheet in addition to the planetary field; and (4) scaling of a mathematical model for the terrestrial magnetosphere. The results obtained yield dipole moments ranging from 2.4 to 5.1x10 to the 22d power, with the lower values associated cw cm with certain models using partial quadrupole and octupole terms to improve the least squares fitting of models to observations
Studies of the interplanetary magnetic field: IMP's to Voyager
During the last two decades, spacecraft projects and individual experiments for which Frank McDonald was a leader have contributed very significantly to the current understanding of the structure of interplanetary space and the correlation between solar and interplanetary disturbances. Studies on the IMP, HELIOS, and Pioneer spin-stabilized spacecraft and the larger attitude-stabilized Voyager spacecraft have provided data sets from which the modern view of the heliosphere has evolved. That concept in which the inner solar system is shown to be dominated by individual streams associated with specific source regions on the Sun is illustrated. As these high-speed streams overtake the preexisting solar plasma, they coalesce and modify the characteristics so that at larger heliocentric distances, these disturbances appear as radially propagating concentric shells of compressed magnetic fields and enhanced fluctuation
The large-scale magnetic field in the solar wind
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown
Interplanetary sector structure, 1962 - 1966
Properties of interplanetary magnetic field observed by IMP-
Modelling the magnetosphere of Mercury
A model magnetosphere for Mercury is presented using an upstream image-dipole and nightside 2-dimensional tail current sheet method. The tail field is represented by an analytical formulation. Magnetic field data from the Mercury 1 encounter by Mariner 10 in March 1974 are used to determine quantitative parameters of the model magnetosphere, using the method of least squares. The magnetopause crossing points directly observed are used to determine the size of the magnetosphere, and the solar wind conditions are used to determine the magnetospheric field at the stagnation point. The model produces a magnetosphere-like region with planetary field lines that are confined in nearly circular cross-sections transverse to the sun-planet line. Results are used to show geometry, field line configuration, and contours of constant field intensity inside the magnetosphere
An extension of the dual magnetometer method for use on a dual spinning spacecraft
A method of estimating and correcting for the magnetic field of a dual spinning spacecraft has been developed by employing an extension of the dual magnetometer technique. This new method is useful for those situations in which a magnetometer boom of modest length is attached to the spinning part of a large spacecraft. The purpose of using a dual spinning spacecraft is to accommodate two types of instruments: imaging and similar pointed remote sensing systems on the stationary platform, and fields, particles and other in-situ measuring instruments on the spinning portion. The new method assumes that the stationary part of the spacecraft possesses a magnetic field which is represented by a combination of a dipole and a quadrupole field
Summary of initial results from the GSFC fluxgate magnetometer on Pioneer 11
The main magnetic field of Jupiter was measured by the Fluxgate Magnetometer on Pioneer 11 and analysis reveals it to be relatively more complex than expected. In a centered spherical harmonic representation with a maximum order of n = 3 (designated GSFC model 04), the dipole term (with opposite polarity to the Earth's) has a moment of 4.28 Gauss x (Jupiter radius cubed), tilted by 9.6 deg towards a system 111 longitude of 232. The quadrupole and octupole moments are significant, 24% and 21% of the dipole moment respectively, and this leads to deviations of the planetary magnetic field from a simple offset tilted dipole for distances smaller than three Jupiter radii. The GSFC model shows a north polar field strength of 14 Gauss and a south polar field strength of 10.4 Gauss. Enhanced absorption effects in the radiation belts may be predicted as a result of field distortion
The complex magnetic field of Jupiter
An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings
Observations of the interplanetary magnetic field July 4-12, 1966
Explorer XXVIII and XXXIII and Pioneer VI MAGNETOMETRIC determination of general macrostructure of interplanetary magnetic field in cislunar spac
Planetary magnetospheres
A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained
- …