379 research outputs found

    Is there something of the MCT in orientationally disordered crystals ?

    Full text link
    Molecular Dynamics simulations have been performed on the orientationally disordered crystal chloroadamantane: a model system where dynamics are almost completely controlled by rotations. A critical temperature T_c = 225 K as predicted by the Mode Coupling Theory can be clearly determined both in the alpha and beta dynamical regimes. This investigation also shows the existence of a second remarkable dynamical crossover at the temperature T_x > T_c consistent with a previous NMR and MD study [1]. This allows us to confirm clearly the existence of a 'landscape-influenced' regime occurring in the temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX

    Transurethral and suprapubic mesh resection after Prolift® bladder perforation: a case report

    Get PDF
    Bladder perforation is a complication which can occur after a Prolift® procedure and may enhance vesicovaginal fistula formation. Different methods of management of bladder perforation caused by mesh procedures are described in the literature, and most authors advise complete excision of the mesh. In the case described in this article, we propose a combined transurethral and suprapubical approach as the optimal method for maximal tape removal, being both minimally invasive and less damaging to the vesical wall. A suprapubical catheter can be removed shortly after surgery to enable optimal tissue healing of the vesical mucosa

    Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bite of spiders belonging to the genus <it>Loxosceles </it>can induce a variety of clinical symptoms, including dermonecrosis, thrombosis, vascular leakage, haemolysis, and persistent inflammation. In order to examine the transcripts expressed in venom gland of <it>Loxosceles laeta </it>spider and to unveil the potential of its products on cellular structure and functional aspects, we generated 3,008 expressed sequence tags (ESTs) from a cDNA library.</p> <p>Results</p> <p>All ESTs were clustered into 1,357 clusters, of which 16.4% of the total ESTs belong to recognized toxin-coding sequences, being the Sphingomyelinases D the most abundant transcript; 14.5% include "possible toxins", whose transcripts correspond to metalloproteinases, serinoproteinases, hyaluronidases, lipases, C-lectins, cystein peptidases and inhibitors. Thirty three percent of the ESTs are similar to cellular transcripts, being the major part represented by molecules involved in gene and protein expression, reflecting the specialization of this tissue for protein synthesis. In addition, a considerable number of sequences, 25%, has no significant similarity to any known sequence.</p> <p>Conclusion</p> <p>This study provides a first global view of the gene expression scenario of the venom gland of <it>L. laeta </it>described so far, indicating the molecular bases of its venom composition.</p

    Chacterization of CU tube filled with Al alloy foam by means of X-ray computer tomography

    Get PDF
    Copper tubes filled with aluminium foams were prepared by directly foaming metal powder compacts inside them. Compressive behaviour and foam-shell interface, that characterizes mechanical properties of reinforced tubes, were investigated by means of variable focus X-ray computer tomography. Compression tests were performed on empty and filled samples at increasing deformation steps: at each stage the samples were observed by tomography. A geometric evaluation of porosity on 2D sections was performed by calculating, for each pore, its area, equivalent diameter and circularity

    In Vivo and In Vitro Effects of Antituberculosis Treatment on Mycobacterial Interferon-γ T Cell Response

    Get PDF
    Background: In recent years, the impact of antituberculous treatment on interferon (IFN)-c response to Mycobacterium tuberculosis antigens has been widely investigated, but the results have been controversial. The objective of the present study was: i) to evaluate longitudinal changes of IFN-c response to M. tuberculosis-specific antigens in TB patients during antituberculous treatment by using the QuantiFERON-TB Gold (QFT-G) assay; ii) to compare the differences in T-cell response after a short or prolonged period of stimulation with mycobacterial antigens; iii) to assess the CD4+ and CD8+ T cells with effector/memory and central/memory phenotype; iv) to investigate the direct in vitro effects of antituberculous drugs on the secretion of IFN-c. Principal Findings: 38 TB patients was evaluated at baseline and at month 2 and 4 of treatment and at month 6 (treatment completion). 27 (71%) patients had a QFT-G reversion (positive to negative) at the end of therapy, while 11 (29%) TB patients remained QFT-G positive at the end of therapy. Among the 11 patients with persistent positive QFT-G results, six had a complete response to the treatment, while the remaining 5 patients did not have a resolution of the disease. All 27 patients who became QFT-G negative had a complete clinical and microbiological recovery of the TB disease. In these patients the release of IFN-c is absent even after a prolonged 6-day incubation with both ESAT-6 and CFP-10 antigens and the percentage of effector/memory T-cells phenotype was markedly lower than subjects with persistent positive QFT-G results. The in vitro study showed that antituberculous drugs did not exert any inhibitory effect on IFN-c production within the range of therapeutically achievable concentrations. Conclusions: The present study suggests that the decrease in the M. tuberculosis-specific T cells responses following successful anti-TB therapy may have a clinical value as a supplemental tool for the monitoring of the efficacy of pharmacologic intervention for active TB. In addition, the antituberculous drugs do not have any direct down-regulatory effect on the specific IFN-c response

    Interactions among the A and T Units of an ECF-Type Biotin Transporter Analyzed by Site-Specific Crosslinking

    Get PDF
    Energy-coupling factor (ECF) transporters are a huge group of micronutrient importers in prokaryotes. They are composed of a substrate-specific transmembrane protein (S component) and a module consisting of a moderately conserved transmembrane protein (T component) and two ABC ATPase domains (A components). Modules of A and T units may be dedicated to a specific S component or shared by many different S units in an organism. The mode of subunit interactions in ECF transporters is largely unknown. BioMNY, the focus of the present study, is a biotin transporter with a dedicated AT module. It consists of the S unit BioY, the A unit BioM and the T unit BioN. Like all T units, BioN contains two three-amino-acid signatures with a central Arg residue in a cytoplasmic helical region. Our previous work had demonstrated a central role of the two motifs in T units for stability and function of BioMNY and other ECF transporters. Here we show by site-specific crosslinking of pairs of mono-cysteine variants that the Ala-Arg-Ser and Ala-Arg-Gly signatures in BioN are coupling sites to the BioM ATPases. Analysis of 64 BioN-BioM pairs uncovered interactions of both signatures predominantly with a segment of ∼13 amino acid residues C-terminal of the Q loop of BioM. Our results further demonstrate that portions of all BioN variants with single Cys residues in the two signatures are crosslinked to homodimers. This finding may point to a dimeric architecture of the T unit in BioMNY complexes
    corecore