15 research outputs found

    NMR studies on calcium-induced conformational transitions in calmodulin

    No full text
    Nuclear magnetic resonance (NMR) spectroscopy was used in order to investigate the relationships between structure, dynamics and calcium binding in the intracellular regulatory protein, calmodulin. Calmodulin consists of two similar domains, each binding two calcium ions with positive cooperativity. The studies described in this thesis focus on the isolated C-terminal domain, TR2C, and two mutants thereof. TR2C consists of two calcium-binding helix- loop-helix motifs packed together in a parallel fashion. The three-dimensional solution structures of TR2C were determined with and without calcium ions bound.The two structures are similar in terms of secondary structure, but large reorientations of the helices occur upon calcium binding, yielding an open conformation with a large exposed hydrophobic surface. Furthermore, the structures of the calcium- free and calcium-loaded states of TR2C were shown to be highly similar to those of the corresponding domain of intact calmodulin, demonstrating the structural autonomy of the domains. In each of the two mutants, E104Q and E140Q, a conserved bidentate calcium-coordinating glutamic acid residue has been mutated to a glutamine in one of the two binding sites. Calcium titration data were obtained from NMR spectra and the binding constants were determined. Both mutants bind calcium sequentially, but in the opposite order, and the structural response was found to be different for the two calcium-binding sites. The calcium-free states of the mutants are very similar to the calcium-free state of wild-type TR2C. In contrast, the calcium-bound states are shown to undergo equilibrium exchange between at least two, approximately equally populated, conformations similar to those of the calcium-free and calcium- loaded states of wild-type TR2C. This conformational exchange occurs on the sub-millisecond time scale. From studies of the backbone fluctuations on pico- second to nanosecond time scales of the calcium- loaded state of the E140Q-mutant, the presence of any significantly populated unfolded intermediate substates could be excluded. Investigations of the temperature dependence of slower dynamics on micro- second to millisecond time scales indicated that the exchange does not involve one single structural transition. The use of off-resonance rotating frame spin relaxation experiments yielded an improved description of the exchange

    Ca2+ binding and conformational changes in a calmodulin domain

    No full text
    Calcium activation of the C-terminal domain of calmodulin was studied using 1H and 15N NMR spectroscopy. The important role played by the conserved bidentate glutmate Ca2+ ligand in the binding loops is emphasized by the striking effects resulting from a mutation of this glutantic acid to a glutamine, i.e. E104Q in loop III and E140Q in loop IV. The study involves determination of Ca2+ binding constants, assignments, and structural characterizations of the apo, (Ca2+)1, and (Ca2+)2 states of the E104Q mutant and comparisons to the wild-type protein and the E140Q mutant [Evenas et al. (1997) Biochemistry 36, 3448-3457]. NMR titration data show sequential Ca2+ binding in the E104Q mutant. The first Ca2+ binds to loop IV and the second to loop III, which is the order reverse to that observed for the E140Q mutant. In both mutants, the major structural changes occur upon Ca2+ binding to loop IV, which implies a different response to Ca2+ binding in the N- and C-terminal EF-hands. Spectral characteristics show that the (Ca2+)1 and (Ca2+)2 states of the E104Q mutant undergo global exchange on a 10-100 μs time scale between conformations seemingly similar to the closed and open structures of this domain in wild-type calmodulin, paralleling earlier observations for the (Ca2+)2 state of the E140Q mutant, indicating that both glutamic acid residues, E104 and E140, are required for stabilization of the open conformation in the (Ca2+)2 state. To verify that the NOE constraints cannot be fulfilled in a single structure, solution structures of the (Ca2+)2 state of the E104Q mutant are calculated. Within the ensemble of structures the precision is good. However, the clearly dynamic nature of the state, a large number of violated distance restraints, ill-defined secondary structural elements, and comparisons to the structures of calmodulin indicate that the ensemble does not provide a good picture of the (Ca2+)2 state of the E104Q mutant but rather represents the distance- averaged structure of at least two distinct different conformations

    NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state

    No full text
    In the present investigation, the Ca2+ activation of the C-terminal domain of bovine calmodulin and the effects of replacing the bidentate Ca2+-coordinating glutamic acid residue in the 12th and last position of loop IV with a glutamine are studied by NMR spectroscopy. The mutation E140Q results in sequential Ca2+ binding in this domain and has far-reaching effects on the structure of (Ca2+)2 TR2C, thereby providing further evidence for the critical role of this glutamic acid residue for the Ca2+- induced conformational change of regulatory EF-hand proteins. Analyses of the NOESY spectra of the mutant under Ca2+-saturated conditions, such that 97% of the protein is in the (Ca2+)2 form, revealed two sets of mutually exclusive NOEs. One set of NOEs is found to be consistent with the closed structure observed in the apo state of the C-terminal domain of the wild- type protein, while the other set supports the open structure observed in the Ca2+-saturated state. In addition, several residues in the hydrophobic core exhibit broadened resonances. We conclude that the (Ca2+)2 form of the mutant experiences a global conformational exchange between states similar to the closed and open conformations of the C-terminal domain of wild-type calmodulin. A population of 65 ± 15% of the open conformation and an exchange rate of (1-7) x 104 s-1 were estimated from the NMR data and the chemical shifts of the wild-type protein. From a Ca2- titration of the 15N-labeled mutant, the macroscopic binding constants (log(K1) = 4.9 ± 0.3 and log(K2) = 3.15 ± 0.10] and the inherent chemical shifts of the intermediate (Ca2+)1 form of the mutant were determined using NMR. Valuable information was also provided on the mechanism of the Ca2+ activation and the roles of the structural elements in the two Ca2+- binding events. Comparison with the wild-type protein indicates that the (Ca2+)1 conformation of the mutant is essentially closed but that some rearrangement of the empty loop IV toward the Ca2+-bound form has occurred

    Measurement of 13

    No full text

    Differences in Backbone Dynamics of Two Homologous Bacterial Albumin-binding Modules: Implications for Binding Specificity and Bacterial Adaptation.

    No full text
    Proteins G and PAB are bacterial albumin-binding proteins expressed at the surface of group C and G streptococci and Peptostreptococcus magnus, respectively. Repeated albumin-binding domains, known as GA modules, are found in both proteins. The third GA module of protein G from the group G streptococcal strain G148 (G148-GA3) and the second GA module of protein PAB from P.magnus strain ALB8 (ALB8-GA) exhibit 59% sequence identity and both fold to form three-helix bundle structures that are very stable against thermal denaturation. ALB8-GA binds human serum albumin with higher affinity than G148-GA3, but G148-GA3 shows substantially broader albumin-binding specificity than ALB8-GA. The (15)N nuclear magnetic resonance spin relaxation measurements reported here, show that the two GA modules exhibit mobility on the picosecond-nanosecond time scale in directly corresponding regions (loops and termini). Most residues in G148-GA3 were seen to be involved in conformational exchange processes on the microsecond-millisecond time scale, whereas for ALB8-GA such motions were only identified for the beginning of helix 2 and its preceding loop. Furthermore, and more importantly, hydrogen-deuterium exchange and saturation transfer experiments reveal large differences between the two GA modules with respect to motions on the second-hour time scale. The high degree of similarity between the two GA modules with respect to sequence, structure and stability, and the observed differences in dynamics, binding affinity and binding specificity to different albumins, suggest a distinct correlation between dynamics, binding affinity and binding specificity. Finally, it is noteworthy in this context that the module G148-GA3, which has broad albumin-binding specificity, is expressed by group C and G streptococci known to infect all mammalian species, whereas P.magnus with the ALB8-GA module has been isolated only from humans

    NMR study of the secondary structure and biopharmaceutical formulation of an active branched antimicrobial peptide

    No full text
    The synthetic antimicrobial peptide SET-M33 is being developed as a possible new antibacterial candidate for the treatment of multi-drug resistant bacteria. SET-M33 is a branched peptide featuring higher resistance and bioavailability than its linear analogues. SET-M33 shows antimicrobial activity against different species of multi-resistant Gram-negative bacteria, including clinically isolated strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii and Escherichia coli. The secondary structure of this 40 amino acid peptide was investigated byNMRto fully characterize the product in the framework of preclinical studies. The possible presence of helixes or β-sheets in the structure had to be explored to predict the behavior of the branched peptide in solution, with a view to designing a formulation for parenteral administration. Since the final formulation of SET-M33 will be strictly defined in terms of counter-ions and additives, we also report the studies on a new salt form, SET-M33 chloride, that retains its activity against Gram-negative bacteria and gains in solubility, with a possible improvement in the pharmacokinetic profile. The opportunity of using a chloride counter-ion is very convenient from a process development point of view and did not increase the toxicity of the antimicrobial drug
    corecore