58 research outputs found

    Pre-Embedding Staining of Single Muscle Fibers for Light and Electron Microscopy Studies of Subcellular Organization

    Get PDF
    Skeletal muscle fibers are large, multinucleated cells which pose a challenge to the morphologist. In the course of studies of the distribution of the glucose transporter GLUT4, in muscle, we have compared different preparative procedures, for both light (LM) and electron microscopy (EM) immunocytochemistry. Here we show that pre-embedding staining of single teased fibers, or of single enzymatically dissociated fibers, has several advantages over the use of sections for observing discrete patterns that extend over long distances in the cells. We report on an optimization study carried out to establish fixation and permeabilization conditions for EM immunogold labeling of the fibers. We find that a simple fixation with depolymerized paraformaldehyde alone, followed by permeabilization with 0.01% saponin, offers the best compromise between the conflicting demands of unhindered tissue penetration and morphology preservation

    Analysis of GLUT4 Distribution in Whole Skeletal Muscle Fibers: Identification of Distinct Storage Compartments That Are Recruited by Insulin and Muscle Contractions

    Get PDF
    The effects of insulin stimulation and muscle contractions on the subcellular distribution of GLUT4 in skeletal muscle have been studied on a preparation of single whole fibers from the rat soleus. The fibers were labeled for GLUT4 by a preembedding technique and observed as whole mounts by immunofluorescence microscopy, or after sectioning, by immunogold electron microscopy. The advantage of this preparation for cells of the size of muscle fibers is that it provides global views of the staining from one end of a fiber to the other and from one side to the other through the core of the fiber. In addition, the labeling efficiency is much higher than can be obtained with ultracryosections. In nonstimulated fibers, GLUT4 is excluded from the plasma membrane and T tubules. It is distributed throughout the muscle fibers with ∼23% associated with large structures including multivesicular endosomes located in the TGN region, and 77% with small tubulovesicular structures. The two stimuli cause translocation of GLUT4 to both plasma membrane and T tubules. Quantitation of the immunogold electron microscopy shows that the effects of insulin and contraction are additive and that each stimulus recruits GLUT4 from both large and small depots. Immunofluorescence double labeling for GLUT4 and transferrin receptor (TfR) shows that the small depots can be further subdivided into TfR-positive and TfR-negative elements. Interestingly, we observe that colocalization of TfR and GLUT4 is increased by insulin and decreased by contractions. These results, supported by subcellular fractionation experiments, suggest that TfR-positive depots are only recruited by contractions. We do not find evidence for stimulation-induced unmasking of resident surface membrane GLUT4 transporters or for dilation of the T tubule system (Wang, W., P.A. Hansen, B.A. Marshall, J.O. Holloszy, and M. Mueckler. 1996. J. Cell Biol. 135:415–430)

    Dystrophin is a microtubule-associated protein

    Get PDF
    Cytolinkers are giant proteins that can stabilize cells by linking actin filaments, intermediate filaments, and microtubules (MTs) to transmembrane complexes. Dystrophin is functionally similar to cytolinkers, as it links the multiple components of the cellular cytoskeleton to the transmembrane dystroglycan complex. Although no direct link between dystrophin and MTs has been documented, costamere-associated MTs are disrupted when dystrophin is absent. Using tissue-based cosedimentation assays on mice expressing endogenous dystrophin or truncated transgene products, we find that constructs harboring spectrinlike repeat 24 through the first third of the WW domain cosediment with MTs. Purified Dp260, a truncated isoform of dystrophin, bound MTs with a Kd of 0.66 µM, a stoichiometry of 1 Dp260/1.4 tubulin heterodimer at saturation, and stabilizes MTs from cold-induced depolymerization. Finally, α- and β-tubulin expression is increased ∼2.5-fold in mdx skeletal muscle without altering the tubulin–MT equilibrium. Collectively, these data suggest dystrophin directly organizes and/or stabilizes costameric MTs and classifies dystrophin as a cytolinker in skeletal muscle

    Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks

    Get PDF
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-β inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis

    Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial

    Get PDF
    Background: Febuxostat and allopurinol are urate-lowering therapies used to treat patients with gout. Following concerns about the cardiovascular safety of febuxostat, the European Medicines Agency recommended a post-licensing study assessing the cardiovascular safety of febuxostat compared with allopurinol.Methods: We did a prospective, randomised, open-label, blinded-endpoint, non-inferiority trial of febuxostat versus allopurinol in patients with gout in the UK, Denmark, and Sweden. Eligible patients were 60 years or older, already receiving allopurinol, and had at least one additional cardiovascular risk factor. Those who had myocardial infarction or stroke in the previous 6 months or who had severe congestive heart failure or severe renal impairment were excluded. After a lead-in phase in which allopurinol dose was optimised towards achieving a serum urate concentration of less than 0·357 mmol/L ( < 6 mg/dL), patients were randomly assigned (1:1, with stratification according to previous cardiovascular events) to continue allopurinol (at the optimised dose) or start febuxostat at 80 mg/day, increasing to 120 mg/day if necessary to achieve the target serum urate concentration. The primary outcome was a composite of hospitalisation for non-fatal myocardial infarction or biomarker-positive acute coronary syndrome; non-fatal stroke; or cardiovascular death. The hazard ratio (HR) for febuxostat versus allopurinol in a Cox proportional hazards model (adjusted for the stratification variable and country) was assessed for non-inferiority (HR limit 1·3) in an on-treatment analysis. This study is registered with the EU Clinical Trials Register (EudraCT 2011-001883-23) and ISRCTN (ISRCTN72443728) and is now closed.Findings: From Dec 20, 2011, to Jan 26, 2018, 6128 patients (mean age 71·0 years [SD 6·4], 5225 [85·3%] men, 903 [14·7%] women, 2046 [33·4%] with previous cardiovascular disease) were enrolled and randomly allocated to receive allopurinol (n=3065) or febuxostat (n=3063). By the study end date (Dec 31, 2019), 189 (6·2%) patients in the febuxostat group and 169 (5·5%) in the allopurinol group withdrew from all follow-up. Median follow-up time was 1467 days (IQR 1029–2052) and median on-treatment follow-up was 1324 days (IQR 870–1919). For incidence of the primary endpoint, on-treatment, febuxostat (172 patients [1·72 events per 100 patient-years]) was non-inferior to allopurinol (241 patients [2·05 events per 100 patient-years]; adjusted HR 0·85 [95% CI 0·70–1·03], p less than 0·0001). In the febuxostat group, 222 (7·2%) of 3063 patients died and 1720 (57·3%) of 3001 in the safety analysis set had at least one serious adverse event (with 23 events in 19 [0·6%] patients related to treatment). In the allopurinol group, 263 (8·6%) of 3065 patients died and 1812 (59·4%) of 3050 had one or more serious adverse events (with five events in five [0·2%] patients related to treatment). Randomised therapy was discontinued in 973 (32·4%) patients in the febuxostat group and 503 (16·5%) patients in the allopurinol group.Interpretation:Febuxostat is non-inferior to allopurinol therapy with respect to the primary cardiovascular endpoint, and its long-term use is not associated with an increased risk of death or serious adverse events compared with allopurinol

    Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle

    Get PDF
    PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy

    Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial

    Get PDF
    Background: Febuxostat and allopurinol are urate-lowering therapies used to treat patients with gout. Following concerns about the cardiovascular safety of febuxostat, the European Medicines Agency recommended a post-licensing study assessing the cardiovascular safety of febuxostat compared with allopurinol. Methods: We did a prospective, randomised, open-label, blinded-endpoint, non-inferiority trial of febuxostat versus allopurinol in patients with gout in the UK, Denmark, and Sweden. Eligible patients were 60 years or older, already receiving allopurinol, and had at least one additional cardiovascular risk factor. Those who had myocardial infarction or stroke in the previous 6 months or who had severe congestive heart failure or severe renal impairment were excluded. After a lead-in phase in which allopurinol dose was optimised towards achieving a serum urate concentration of less than 0·357 mmol/L (&lt;6 mg/dL), patients were randomly assigned (1:1, with stratification according to previous cardiovascular events) to continue allopurinol (at the optimised dose) or start febuxostat at 80 mg/day, increasing to 120 mg/day if necessary to achieve the target serum urate concentration. The primary outcome was a composite of hospitalisation for non-fatal myocardial infarction or biomarker-positive acute coronary syndrome; non-fatal stroke; or cardiovascular death. The hazard ratio (HR) for febuxostat versus allopurinol in a Cox proportional hazards model (adjusted for the stratification variable and country) was assessed for non-inferiority (HR limit 1·3) in an on-treatment analysis. This study is registered with the EU Clinical Trials Register (EudraCT 2011-001883-23) and ISRCTN (ISRCTN72443728) and is now closed. Findings: From Dec 20, 2011, to Jan 26, 2018, 6128 patients (mean age 71·0 years [SD 6·4], 5225 [85·3%] men, 903 [14·7%] women, 2046 [33·4%] with previous cardiovascular disease) were enrolled and randomly allocated to receive allopurinol (n=3065) or febuxostat (n=3063). By the study end date (Dec 31, 2019), 189 (6·2%) patients in the febuxostat group and 169 (5·5%) in the allopurinol group withdrew from all follow-up. Median follow-up time was 1467 days (IQR 1029–2052) and median on-treatment follow-up was 1324 days (IQR 870–1919). For incidence of the primary endpoint, on-treatment, febuxostat (172 patients [1·72 events per 100 patient-years]) was non-inferior to allopurinol (241 patients [2·05 events per 100 patient-years]; adjusted HR 0·85 [95% CI 0·70–1·03], p&lt;0·0001). In the febuxostat group, 222 (7·2%) of 3063 patients died and 1720 (57·3%) of 3001 in the safety analysis set had at least one serious adverse event (with 23 events in 19 [0·6%] patients related to treatment). In the allopurinol group, 263 (8·6%) of 3065 patients died and 1812 (59·4%) of 3050 had one or more serious adverse events (with five events in five [0·2%] patients related to treatment). Randomised therapy was discontinued in 973 (32·4%) patients in the febuxostat group and 503 (16·5%) patients in the allopurinol group. Interpretation: Febuxostat is non-inferior to allopurinol therapy with respect to the primary cardiovascular endpoint, and its long-term use is not associated with an increased risk of death or serious adverse events compared with allopurinol. Funding: Menarini, Ipsen, and Teijin Pharma Ltd

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF
    • …
    corecore