841 research outputs found

    α

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressively paralytic neurodegenerative disease that can be caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1). Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate aggregates of mutant protein in the brainstem and spinal cord. Bee venom (BV), which is also known as apitoxin, is extracted from honeybees and is commonly used in oriental medicine for the treatment of chronic rheumatoid arthritis and osteoarthritis. The purpose of the present study was to determine whether BV affects misfolded protein aggregates such as alpha-synuclein, which is a known pathological marker in Parkinson disease, and ubiquitin-proteasomal activity in hSOD1G93A mutant mice. BV was bilaterally administered into a 98-day-old hSOD1G93A animal model. We found that BV-treated hSOD1G93A transgenic mice showed reduced detergent-insoluble polymerization and phosphorylation of α-synuclein. Furthermore, phosphorylated or nitrated α-synuclein was significantly reduced in the spinal cords and brainstems of BV-treated hSOD1G93A mice and reduced proteasomal activity was revealed in the brainstems of BV-treated symptomatic hSOD1G93A. From these findings, we suggest that BV treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1G93A ALS model and may help to slow motor neuron loss caused by misfolded protein aggregates in ALS models

    Melittin restores proteasome function in an animal model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1) in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation

    Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic lateral sclerosis (ALS) is a disease affecting the central nervous system that is either sporadic or familial origin and causing the death of motor neurons. One of the genetic factors contributing to the etiology of ALS is mutant SOD1 (mtSOD1), which induces vulnerability of motor neurons through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport, glutamate excitotoxicity, inadequate growth factor signaling, and neuroinflammation. Bee venom has been used in the practice of Oriental medicine and evidence from the literature indicates that BV plays an anti-inflammatory or anti-nociceptive role against inflammatory reactions associated with arthritis and other inflammatory diseases. The purpose of the present study was to determine whether bee venom suppresses motor neuron loss and microglial cell activation in hSOD1<sup>G93A </sup>mutant mice.</p> <p>Methods</p> <p>Bee venom (BV) was bilaterally injected (subcutaneously) into a 14-week-old (98 day old) male hSOD1<sup>G93A </sup>animal model at the Zusanli (ST36) acupoint, which is known to mediate an anti-inflammatory effect. For measurement of motor activity, rotarod test was performed and survival statistics were analyzed by Kaplan-Meier survival curves. The effects of BV treatment on anti-neuroinflammation of hSOD1<sup>G93A </sup>mice were assessed via immunoreactions using Iba 1 as a microglia marker and TNF-α antibody. Activation of ERK, Akt, p38 MAP Kinase (MAPK), and caspase 3 proteins was evaluated by western blotting.</p> <p>Results</p> <p>BV-treated mutant hSOD1 transgenic mice showed a decrease in the expression levels of microglia marker and phospho-p38 MAPK in the spinal cord and brainstem. Interestingly, treatment of BV in symptomatic ALS animals improved motor activity and the median survival of the BV-treated group (139 ± 3.5 days) was 18% greater than control group (117 ± 3.1 days). Furthermore, we found that BV suppressed caspase-3 activity and blocked the defects of mitochondrial structure and cristae morphology in the lumbar spinal cord of hSOD1<sup>G93A </sup>mice at the symptomatic stage.</p> <p>Conclusion</p> <p>From these findings, our research suggests BV could be a potential therapeutic agent for anti-neuroinflammatory effects in an animal model of ALS.</p

    Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats

    Get PDF
    Using spontaneously hypertensive rats (SHR), this study investigated whether electroacupuncture (EA) could reduce early stage hypertension by examining nitric oxide (NO) levels in plasma and nitric oxide synthase (NOS) levels in the mesenteric resistance artery. EA was applied to the acupuncture point Governor Vessel 20 (GV20) or to a non-acupuncture point in the tail twice weekly for 3 weeks under anesthesia. In conscious SHR and normotensive Wistar Kyoto (WKY) rats, blood pressure was determined the day after EA treatment by the tail-cuff method. We measured plasma NO concentration, and evaluated endothelial NO syntheses (eNOS) and neuronal NOS (nNOS) protein expression in the mesenteric artery. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were lower after 3 weeks of GV20 treatment than EA at non-acupuncture point and no treatment control in SHR. nNOS expression by EA was significantly different between both WKY and no treatment SHR control, and EA at GV20 in SHR. eNOS expression was significantly high in EA at GV 20 compared with no treatment control. In conclusion, EA could attenuate the blood pressure elevation of SHR, along with enhancing NO/NOS activity in the mesenteric artery in SHR

    Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Get PDF
    Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases
    corecore