47 research outputs found

    Data-Injection Attacks

    Get PDF
    In this chapter we review some of the basic attack constructions that exploit a stochastic description of the state variables. We pose the state estimation problem in a Bayesian setting and cast the bad data detection procedure as a Bayesian hypothesis testing problem. This revised detection framework provides the benchmark for the attack detection problem that limits the achievable attack disruption. Indeed, the trade-off between the impact of the attack, in terms of disruption to the state estimator, and the probability of attack detection is analytically characterized within this Bayesian attack setting. We then generalize the attack construction by considering information-theoretic measures that place fundamental limits to a broad class of detection, estimation, and learning techniques. Because the attack constructions proposed in this chapter rely on the attacker having access to the statistical structure of the random process describing the state variables, we conclude by studying the impact of imperfect statistics on the attack performance. Specifically, we study the attack performance as a function of the size of the training data set that is available to the attacker to estimate the second-order statistics of the state variables.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0418

    Covariance Estimation from Compressive Data Partitions using a Projected Gradient-based Algorithm

    Full text link
    Covariance matrix estimation techniques require high acquisition costs that challenge the sampling systems' storing and transmission capabilities. For this reason, various acquisition approaches have been developed to simultaneously sense and compress the relevant information of the signal using random projections. However, estimating the covariance matrix from the random projections is an ill-posed problem that requires further information about the data, such as sparsity, low rank, or stationary behavior. Furthermore, this approach fails using high compression ratios. Therefore, this paper proposes an algorithm based on the projected gradient method to recover a low-rank or Toeplitz approximation of the covariance matrix. The proposed algorithm divides the data into subsets projected onto different subspaces, assuming that each subset contains an approximation of the signal statistics, improving the inverse problem's condition. The error induced by this assumption is analytically derived along with the convergence guarantees of the proposed method. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images with high compression ratios (8-15% approx) in noisy scenarios. Additionally, simulations and theoretical results show that filtering the gradient reduces the estimator's error recovering up to twice the number of eigenvectors.Comment: submitted to IEEE Transactions on Image Processin

    Generalization Analysis of Machine Learning Algorithms via the Worst-Case Data-Generating Probability Measure

    Full text link
    In this paper, the worst-case probability measure over the data is introduced as a tool for characterizing the generalization capabilities of machine learning algorithms. More specifically, the worst-case probability measure is a Gibbs probability measure and the unique solution to the maximization of the expected loss under a relative entropy constraint with respect to a reference probability measure. Fundamental generalization metrics, such as the sensitivity of the expected loss, the sensitivity of the empirical risk, and the generalization gap are shown to have closed-form expressions involving the worst-case data-generating probability measure. Existing results for the Gibbs algorithm, such as characterizing the generalization gap as a sum of mutual information and lautum information, up to a constant factor, are recovered. A novel parallel is established between the worst-case data-generating probability measure and the Gibbs algorithm. Specifically, the Gibbs probability measure is identified as a fundamental commonality of the model space and the data space for machine learning algorithms.Comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (7 + 2 pages

    Learning requirements for stealth attacks

    Full text link
    The learning data requirements are analyzed for the construction of stealth attacks in state estimation. In particular, the training data set is used to compute a sample covariance matrix that results in a random matrix with a Wishart distribution. The ergodic attack performance is defined as the average attack performance obtained by taking the expectation with respect to the distribution of the training data set. The impact of the training data size on the ergodic attack performance is characterized by proposing an upper bound for the performance. Simulations on the IEEE 30-Bus test system show that the proposed bound is tight in practical settings.Comment: International Conference on Acoustics, Speech, and Signal Processing 201

    Power Injection Measurements are more Vulnerable to Data Integrity Attacks than Power Flow Measurements

    Full text link
    A novel metric that describes the vulnerability of the measurements in power system to data integrity attacks is proposed. The new metric, coined vulnerability index (VuIx), leverages information theoretic measures to assess the attack effect on the fundamental limits of the disruption and detection tradeoff. The result of computing the VuIx of the measurements in the system yields an ordering of the measurements vulnerability based on the level of exposure to data integrity attacks. This new framework is used to assess the measurements vulnerability of IEEE test systems and it is observed that power injection measurements are overwhelmingly more vulnerable to data integrity attacks than power flow measurements. A detailed numerical evaluation of the VuIx values for IEEE test systems is provided.Comment: 6 pages, 9 figures, Submitted to IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grid

    An information theoretic vulnerability metric for data integrity attacks on smart grids

    Full text link
    A novel metric that describes the vulnerability of the measurements in power systems to data integrity attacks is proposed. The new metric, coined vulnerability index (VuIx), leverages information theoretic measures to assess the attack effect on the fundamental limits of the disruption and detection tradeoff. The result of computing the VuIx of the measurements in the system yields an ordering of their vulnerability based on the level of exposure to data integrity attacks. This new framework is used to assess the measurement vulnerability of IEEE 9-bus and 30-bus test systems and it is observed that power injection measurements are overwhelmingly more vulnerable to data integrity attacks than power flow measurements. A detailed numerical evaluation of the VuIx values for IEEE test systems is provided.Comment: 7 pages, 10 figures, submitted to IET Smart Grid. arXiv admin note: substantial text overlap with arXiv:2207.0697

    Information Theoretic Data Injection Attacks with Sparsity Constraints

    Full text link
    Information theoretic sparse attacks that minimize simultaneously the information obtained by the operator and the probability of detection are studied in a Bayesian state estimation setting. The attack construction is formulated as an optimization problem that aims to minimize the mutual information between the state variables and the observations while guaranteeing the stealth of the attack. Stealth is described in terms of the Kullback-Leibler (KL) divergence between the distributions of the observations under attack and without attack. To overcome the difficulty posed by the combinatorial nature of a sparse attack construction, the attack case in which only one sensor is compromised is analytically solved first. The insight generated in this case is then used to propose a greedy algorithm that constructs random sparse attacks. The performance of the proposed attack is evaluated in the IEEE 30 Bus Test Case.Comment: Submitted to SGC 202
    corecore