12 research outputs found

    NASA Aeronautics Propulsion Overview

    Get PDF
    No abstract availabl

    Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft

    Get PDF
    A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance

    Experimental performance of three design factors for ventral nozzles for SSTOVL aircraft

    Get PDF
    An experimental study of three variations of a ventral nozzle system for supersonic short-takeoff and vertical-landing (SSTOVL) aircraft was performed at the NASA LeRC Powered Lift Facility. These test results include the effects of an annular duct flow into the ventral duct, a blocked tailpipe, and a short ventral duct length. An analytical study was also performed on the short ventral duct configuration using the PARC3D computational dynamics code. Data presented include pressure losses, thrust and flow performance, internal flow visualization, and pressure distributions at the exit plane of the ventral nozzle

    Experimental performance of a ventral nozzle with pitch and yaw vectoring capability for SSTOVL aircraft

    Get PDF
    Aircraft with supersonic, short takeoff, and vertical landing capability were proposed to replace some of the current high-performance aircraft. Several of these configurations use a ventral nozzle in the lower fuselage, aft of the center of gravity, for lift or pitch control. Internal vanes canted at 20 deg were added to a swivel-type ventral nozzle and tested at tailpipe-to-ambient pressure ratios up to 5.0 on the Powered Lift Facility at NASA LeRC. The addition of sets of four and seven vanes decreased the discharge coefficient by at least 6 percent and did not affect the thrust coefficient. Side force produced by the nozzle with vanes was 14 percent or more of the vertical force. In addition, this side force caused only a small loss in vertical force in comparison to the nozzle without vanes. The net thrust force was 8 deg from the vertical for four vanes and 10.5 deg for seven

    Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    Get PDF
    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns

    Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft

    Get PDF
    Several proposed configurations for supersonic short takeoff, vertical landing aircraft will require one or more ventral nozzles for lift and pitch control. The swivel nozzle is one possible ventral nozzle configuration. A swivel nozzle (approximately one-third scale) was built and tested on a generic model tailpipe. This nozzle was capable of vectoring the flow up to + or - 23 deg from the vertical position. Steady-state performance data were obtained at pressure ratios to 4.5, and pitot-pressure surveys of the nozzle exit plane were made. Two configurations were tested: the swivel nozzle with a square contour of the leading edge of the ventral duct inlet, and the same nozzle with a round leading edge contour. The swivel nozzle showed good performance overall, and the round-leading edge configuration showed an improvement in performance over the square-leading edge configuration

    Performance characteristics of a variable-area vane nozzle for vectoring an ASTOVL exhaust jet up to 45 deg

    Get PDF
    Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported

    Internal reversing flow in a tailpipe offtake configuration for SSTOVL aircraft

    Get PDF
    A generic one-third scale model of a tailpipe offtake system for a supersonic short takeoff vertical landing (SSTOVL) aircraft was tested at LeRC Powered Lift Facility. The model consisted of a tailpipe with twin elbows, offtake ducts, and flow control nozzles, plus a small ventral nozzle and a blind flange to simulate a blocked cruise nozzle. The offtake flow turned through a total angle of 177 degrees relative to the tailpipe inlet axis. The flow split was 45 percent to each offtake and 10 percent to the ventral nozzle. The main test objective was to collect data for comparison to the performance of the same configuration predicted by a computational fluid dynamics (CFD) analysis. Only the experimental results are given - the analytical results are published in a separate paper. Performance tests were made with unheated air at tailpipe-to-ambient pressure ratios up to 5. The total pressure loss through the offtakes was as high as 15.5 percent. All test results are shown as graphs, contour plots, and wall pressure distributions. The complex flow patterns in the tailpipe and elbows at the offtake openings are described with traversing flow angle probe and paint streak flow visualization data

    NASA Electrified Propulsion Research Summary

    Get PDF
    No abstract availabl

    Electric Aircraft Technology Development Overview Briefing

    Get PDF
    This is a presentation to the NAC Aeronautics Committee providing an overview of electrified aircraft propulsion technology development for the following targeted vehicle classes 1) Single-Aisle Transports, 2) Vertical Takeoff and Landing-Urban Air Mobility, and 3) Thin Haul Conventional Takeoff and Landing as well as enabling test capabilities
    corecore