1,833 research outputs found
Important role of alkali atoms in A4C60
We show that hopping via the alkali atoms plays an important role for the t1u
band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is
broadened by more than 40 % by the presence of the alkali atoms. The difference
between A4C60 and A3C60 is in particular due to the less symmetric location of
the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more
information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
Electronic Structure of Superconducting Ba6c60
We report the results of first-principles electronic-structure calculations
for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound
shows strong Ba-C hybridization in the valence and conduction regions, mixed
covalent/ionic bonding character, partial charge transfer, and insulating
zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with
REVTE
Three-dimensional electronic instabilities in polymerized solid A1C60
The low-temperature structure of A1C60 (A=K, Rb) is an ordered array of
polymerized C60 chains, with magnetic properties that suggest a non-metallic
ground state. We study the paramagnetic state of this phase using
first-principles electronic-structure methods, and examine the magnetic
fluctuations around this state using a model Hamiltonian. The electronic and
magnetic properties of even this polymerized phase remain strongly three
dimensional, and the magnetic fluctuations favor an unusual three-dimensional
antiferromagnetically ordered structure with a semi-metallic electronic
spectrum.Comment: REVTeX 3.0, 10 pages, 4 figures available on request from
[email protected]
Commensurate and modulated magnetic phases in orthorhombic A1C60
Competing magnetically ordered structures in polymerized orthorhombic A1C60
are studied. A mean-field theory for the equilibrium phases is developed using
an Ising model and a classical Heisenberg model to describe the competition
between inter- and intra-chain magnetic order in the solid. In the Ising model,
the limiting commensurate one-dimensional and three-dimensional phases are
separated by a commensurate three-sublattice state and by two sectors
containing higher-order commensurate phases. For the Heisenberg model the
quasi-1D phase is never the equilibrium state; instead the 3D commensurate
phases exhibits a transition to a continuum of coplanar spiral magnetic phases.Comment: 11 pages REVTeX 3.0 plus 4 figures appende
Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes
The Mott-Hubbard transition is studied for a Hubbard model with orbital
degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments,
we conjecture that the Mott-Hubbard transition takes place for U/W \propto
\sqrt{N}, where U is the Coulomb interaction and W is the band width. This is
supported by exact diagonalization and Monte-Carlo calculations. Realistic
parameters for the doped fullerenes lead to the conclusion that stoichiometric
A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated
metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B
Rapid Com
Recommended from our members
The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column.
Plastic waste has been documented in nearly all types of marine environments and has been found in species spanning all levels of marine food webs. Within these marine environments, deep pelagic waters encompass the largest ecosystems on Earth. We lack a comprehensive understanding of the concentrations, cycling, and fate of plastic waste in sub-surface waters, constraining our ability to implement effective, large-scale policy and conservation strategies. We used remotely operated vehicles and engineered purpose-built samplers to collect and examine the distribution of microplastics in the Monterey Bay pelagic ecosystem at water column depths ranging from 5 to 1000 m. Laser Raman spectroscopy was used to identify microplastic particles collected from throughout the deep pelagic water column, with the highest concentrations present at depths between 200 and 600 m. Examination of two abundant particle feeders in this ecosystem, pelagic red crabs (Pleuroncodes planipes) and giant larvaceans (Bathochordaeus stygius), showed that microplastic particles readily flow from the environment into coupled water column and seafloor food webs. Our findings suggest that one of the largest and currently underappreciated reservoirs of marine microplastics may be contained within the water column and animal communities of the deep sea
Sourcing Substitution and Related Price Index Biases
intermediate input. We define a class of bias problems that arise when purchasers shift their expenditures among sellers charging different prices for units the purchasers view as the same product but that are not regarded as being the same for the purposes of price measurement. For businesses purchasing from other businesses, these sorts of shifts can cause sourcing substitution bias in the Producer Price Index (PPI) and the Import Price Index (MPI), as well as potentially in the proposed new true Input Price Index (IPI). Similarly, when consumers shift their expenditures for the same products temporally to take advantage of promotional sales or among retailers charging different per unit prices, this can cause a promotions bias problem in the Consumer Price Index (CPI) or a CPI outlet substitution bias. We provide a common framework for these bias problems. Ideal target indexes are defined and discussed that could greatly reduce these biases. We also address the challenges national statistics agencies must surmount to produce price index measures more like the specified target ones. 1
Theory of Superconducting of doped fullerenes
We develop the nonadiabatic polaron theory of superconductivity of
taking into account the polaron band narrowing and realistic
electron-phonon and Coulomb interactions. We argue that the crossover from the
BCS weak-coupling superconductivity to the strong-coupling polaronic and
bipolaronic superconductivity occurs at the BCS coupling constant independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's
theorem except small polarons for any realistic electron-phonon interaction. By
the use of the polaronic-type function and the ``exact'' diagonalization in the
truncated Hilbert space of vibrons (``phonons'') we calculate the ground state
energy and the electron spectral density of the molecule. This
allows us to describe the photoemission spectrum of in a wide
energy region and determine the electron-phonon interaction. The strongest
coupling is found with the high-frequency pinch mode and with the
Frenkel exciton. We clarify the crucial role of high-frequency bosonic
excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb
repulsion allowing the intermediate and low-frequency phonons to couple two
small polarons in a Cooper pair. The Eliashberg-type equations are solved for
low-frequency phonons. The value of the superconducting , its pressure
dependence and the isotope effect are found to be in a remarkable agreement
with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques
Covalency effects on the magnetism of EuRh2P2
In experiments, the ternary Eu pnictide EuRh2P2 shows an unusual coexistence
of a non-integral Eu valence of about 2.2 and a rather high Neel temperature of
50 K. In this paper, we present a model which explains the non-integral Eu
valence via covalent bonding of the Eu 4f-orbitals to P2 molecular orbitals. In
contrast to intermediate valence models where the hybridization with
delocalized conduction band electrons is known to suppress magnetic ordering
temperatures to at most a few Kelvin, covalent hybridization to the localized
P2 orbitals avoids this suppression. Using perturbation theory we calculate the
valence, the high temperature susceptibility, the Eu single-ion anisotropy and
the superexchange couplings of nearest and next-nearest neighbouring Eu ions.
The model predicts a tetragonal anisotropy of the Curie constants. We suggest
an experimental investigation of this anisotropy using single crystals. From
experimental values of the valence and the two Curie constants, the three free
parameters of our model can be determined.Comment: 9 pages, 5 figures, submitted to J. Phys.: Condens. Matte
- …