35 research outputs found

    Genetic transformation of Artemisia carvifolia Buch with rol genes enhances artemisinin accumulation

    Get PDF
    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.010.8% DW). There is therefore an urgent need to design new strate- gies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: arte- misinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin con- tent in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism

    Enhanced artemisinin yield by expression of rol genes in artemisia annua

    Get PDF
    Background: Despite of many advances in the treatment of malaria, it is still the fifth most prevalent disease worldwide and is one of the major causes of death in the developing countries which accounted for 584,000 deaths in 2013, as estimated by World Health Organization. Artemisinin from Artemisia annua is still one of the most effective treatments for malaria. Increasing the artemisinin content of A. annua plants by genetic engineering would improve the availability of this much-needed drug. Methods: In this regard, a high artemisinin-yielding hybrid of A. annua produced by the centre for novel agricultural products of the University of York, UK, was selected (artemisinin maximally 1.4 %). As rol genes are potential candidates of biochemical engineering, genetic transformation of A. annua with Agrobacterium tumefaciens GV3101 harbouring vectors with rol B and rol C genes was carried out with the objective of enhancement of artemisinin content. Transgenic lines produced were analysed by the LC-MS for quantitative analysis of artemisinin and analogues. These high artemisinin yielding transgenics were also analysed by real time quantitative PCR to find the molecular dynamics of artemisinin enhancement. Genes of artemisinin biosynthetic pathway were studied including amorphadiene synthase (ADS), cytochrome P450, (CYP71AV1) and aldehyde dehydrogenase 1 (ALDH1). Trichome-specific fatty acyl-CoA reductase 1(TAFR1) is an enzyme involved in both trichome development and sesquiterpenoid biosynthesis and both processes are important for artemisinin biosynthesis. Thus, real time qPCR analysis of the TAFR1 gene was carried out, and trichome density was determined. Results: Transgenics of rol B gene showed two- to ninefold (the decimal adds nothing in the abstract, please simplify to two- to ninefold) increase in artemisinin, 4-12-fold increase in artesunate and 1.2-3-fold increase in dihydroartemisinin. Whereas in the case of rol C gene transformants, a fourfold increase in artemisinin, four to ninefold increase in artesunate and one- to twofold increase in dihydroartemisinin concentration was observed. Transformants with the rol B gene had higher expression of these genes than rol C transformants. TAFR1 was also found to be more expressed in rol gene transgenics than wild type A. annua, which was also in accordance with the trichome density of the respective plant. Conclusion: Thus it was proved that rol B and rol C genes are effective in the enhancement of artemisinin content of A. annua, rol B gene being more active to play part in this enhancement than rol C gene

    Separation of Non-alkaloid Toxin Lignans and New Flavonoid from Himalayan Mayapple (Podophyllum Hexandrum Royle) by High-Speed Counter-Current Chromatography and Their Anti-inflammatory Activity Evaluation

    Get PDF
    Podophyllum hexandrum Royle (Berberidaceae) is reported from the Himalayan region and China. It is also known as the Himalayan Mayapple and is reported for the treatment of constipation, fever, jaundice, liver disorders, etc. Herein, the isolation of chemical constituents using high-speed counter-current chromatography (HSCCC) from the EtOH extract of the rhizomes of Himalayan Mayapple is reported. As a result, kaempferol 3-glucoside (1), quercetin-3-O-β-D-glucopyranoside (2), quercetin 3-O-β-D-glucopyranosyl-(1→6)-3-O-ethyl-β-D-glucopyranoside (3), kaempferol 3-O-β-D-glucopyranoside (4), α-peltatin(5), podophyllotoxin (6), 4'-demethylpodophyllotoxin (7), 4',5'-didemethylpodophyllotoxin (8), and kaempferol (9)were separated. Compounds 6-9 were separated by the normal HSCCC while 1-5 were obtained by the offline-recycling HSCCC using HEMWat (1:9:4:6, v/v) solvent system. The pure components were tested in lipopolysaccharides-induced mice macrophage cells. Compounds 6 and 7 showed significant inhibition. The nitric oxide production was inhibited by compounds 6 and 7, effectively, with IC50 values of 1.328 x 10-6 and 2.851 x 10-6 M, respectively. In this assay, kaempferol (9), a positive inhibitor expressively inhibited lipopolysaccharides-induced nitric oxide production

    Five Indigenous Plants of Pakistan with Antinociceptive, Anti-Inflammatory, Antidepressant, and Anticoagulant Properties in Sprague Dawley Rats

    Get PDF
    Five medicinal plants of Pakistan were investigated for their antinociceptive, anti-inflammatory, antidepressant, and anticoagulant potential. Antinociceptive activity was estimated by hot plate and writhing assay. In hot plate assay, Quercus dilatata (52.2%) and Hedera nepalensis (59.1%) showed moderate while Withania coagulans (65.3%) displayed a significant reduction in pain. On the other hand, in writhing assay, Quercus dilatata (49.6%), Hedera nepalensis (52.7%), and Withania coagulans (62.0%) showed comparative less activity. In anti-inflammatory assays crude extracts showed significant edema inhibition in a dose dependent manner. In carrageenan assay, the highest activity was observed for Withania coagulans (70.0%) followed by Quercus dilatata (66.7%) and Hedera nepalensis (63.3%). Similar behavior was observed in histamine assay with percentage inhibitions of 74.3%, 60.4%, and 63.5%, respectively. Antidepressant activity was estimated by forced swim test and the most potent activity was revealed by Withania coagulans with immobility time 2.2s (95.9%) followed by Hedera nepalensis with immobility time 25.3s (53.4%). Moreover, the crude extracts of Fagonia cretica (74.6%), Hedera nepalensis (73.8%), and Phytolacca latbenia (67.3%) showed good anticoagulant activity with coagulation times 86.9s, 84.3s, and 67.5s, respectively. Collectively, the results demonstrate that these five plants have rich medicinal constituents which can be further explored

    Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch.

    Get PDF
    Abstract Background: The secondary metabolites of the Artemisia genus are well known for their important therapeutic properties. This genus is one of the valuable sources of flavonoids and other polyphenols, but due to the low contents of these important metabolites, there is a need to either enhance their concentration in the original plant or seek alternative sources for them. The aim of the current study was to detect and enhance the yield of antioxidant compounds of Artemisia carvifolia Buch. HPLC analysis was performed to detect the antioxidants. With the aim of increasing flavonoid content, Rol gene transgenics of A. carvifolia were established. Two genes of the flavonoid biosynthetic pathway, phenylalanine ammonia-lyase and chalcone synthase, were studied by real time qPCR. Antioxidant potential was determined by performing different antioxidant assays. Results: HPLC analysis of wild-type A. carvifolia revealed the presence of flavonoids such as caffeic acid (30 μg/g DW), quercetin (10 μg/g DW), isoquercetin (400 μg/g DW) and rutin (300 μg/g DW). Compared to the untransformed plants, flavonoid levels increased 1.9-6-fold and 1.6-4-fold in rol B and rol C transgenics, respectively. RT qPCR analysis showed a variable expression of the flavonoid biosynthetic genes, including those encoding phenylalanine ammonia-lyase and chalcone synthase, which were found to be relatively more expressed in transformed than wild-type plants, thus correlating with the metabolite concentration. Methanolic extracts of transgenics showed higher antioxidant capacity, reducing power, and protection against free radical-induced DNA damage. Among the transgenic plants, those harboring rol B were slightly more active than the rol C-transformants. Conclusion: As well as demonstrating the effectiveness of rol genes in inducing plant secondary metabolism, this study provides insight into the molecular dynamics of the flavonoid accumulation pattern, which correlated with the expression of biosynthetic genes. Keywords: Agrobacterium tumefaciens, Artemisia carvifolia Buch, antioxidant assays, Chalcone synthase, Flavonoids, Phenylalanine ammonia-lyase, Rol gen

    Molecular Screening of Bioactive Compounds of Garlic for Therapeutic Effects against COVID-19

    No full text
    An outbreak of pneumonia occurred on December 2019 in Wuhan, China, which caused a serious public health emergency by spreading around the globe. Globally, natural products are being focused on more than synthetic ones. So, keeping that in view, the current study was conducted to discover potential antiviral compounds from Allium sativum. Twenty-five phytocompounds of this plant were selected from the literature and databases including 3-(Allylsulphinyl)-L-alanine, Allicin, Diallyl sulfide, Diallyl disulfide, Diallyl trisulfide, Glutathione, L-Cysteine, S-allyl-mercapto-glutathione, Quercetin, Myricetin, Thiocysteine, Gamma-glutamyl-Lcysteine, Gamma-glutamylallyl-cysteine, Fructan, Lauricacid, Linoleicacid, Allixin, Ajoene, Diazinon Kaempferol, Levamisole, Caffeicacid, Ethyl linoleate, Scutellarein, and S-allylcysteine methyl-ester. Virtual screening of these selected ligands was carried out against drug target 3CL protease by CB-dock. Pharmacokinetic and pharmacodynamic properties defined the final destiny of compounds as drug or non-drug molecules. The best five compounds screened were Allicin, Diallyl Sulfide, Diallyl Disulfide, Diallyl Trisulfide, Ajoene, and Levamisole, which showed themselves as hit compounds. Further refining by screening filters represented Levamisole as a lead compound. All the interaction visualization analysis studies were performed using the PyMol molecular visualization tool and LigPlot+. Conclusively, Levamisole was screened as a likely antiviral compound which might be a drug candidate to treat SARS-CoV-2 in the future. Nevertheless, further research needs to be carried out to study their potential medicinal use

    Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation.

    No full text
    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism
    corecore