602 research outputs found

    Extension the Noether's theorem to Lagrangian formulation with nonlocality

    Full text link
    A Lagrangian formulation with nonlocality is investigated in this paper. The nonlocality of the Lagrangian is introduced by a new nonlocal argument that is defined as a nonlocal residual satisfying the zero mean condition. The nonlocal Euler-Lagrangian equation is derived from the Hamilton's principle. The Noether's theorem is extended to this Lagrangian formulation with nonlocality. With the help of the extended Noether's theorem, the conservation laws relevant to energy, linear momentum, angular momentum and the Eshelby tensor are determined in the nonlocal elasticity associated with the mechanically based constitutive model. The results show that the conservation laws exist only in the form of the integral over the whole domain occupied by body. The localization of the conservation laws is discussed in detail. We demonstrate that not every conservation law corresponds to a local equilibrium equation. Only when the nonlocal residual of conservation current exists, can a conservation law be transformed into a local equilibrium equation by localization.Comment: 13 page

    Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: a model for magnetic polymer processing

    Get PDF
    Magnetic polymer materials processing involves many multi-physical and chemical effects. Motivated by such applications, in the present work a theoretical analysis is conducted of combined heat and mass transfer in unsteady mixed convection flow of micropolar fluid over an oscillatory inclined porous plate in a homogenous porous medium with heat source, radiation absorption and Joule dissipation. A first order homogenous chemical reaction model is used. The transformed non-dimensional boundary value problem is solved using a perturbation method and Runge-Kutta fourth order numerical quadrature (shooting technique). The emerging parameters dictating the transport phenomena are shown to be the gyro-viscosity micropolar material parameter, magnetic field parameter, permeability of the porous medium, Prandtl number, Schmidt number, thermal Grashof number, species Grashof number, thermal radiation-conduction parameter, heat absorption parameter, radiation absorption parameter, Eckert number, chemical reaction parameter and Eringen coupling number (vortex viscosity ratio parameter). The impact of these parameters on linear velocity, microrotation (angular velocity), temperature and concentration are evaluated in detail. Results for skin friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are also included. Couple stress is observed to be reduced with stronger magnetic field. Verification of solutions is achieved with earlier published analytical results

    Note on a Micropolar Gas-Kinetic Theory

    Full text link
    The micropolar fluid mechanics and its transport coefficients are derived from the linearized Boltzmann equation of rotating particles. In the dilute limit, as expected, transport coefficients relating to microrotation are not important, but the results are useful for the description of collisional granular flow on an inclined slope. (This paper will be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer))Comment: 15 pages, 0 figure. To be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer

    Oscillatory dissipative conjugate heat and mass transfer in chemically-reacting micropolar flow with wall couple stress : a finite element numerical study

    Get PDF
    High temperature non-Newtonian materials processing provides a stimulating area for process engineering simulation. Motivated by emerging applications in this area, the present article investigates the time-dependent free convective flow of a chemically-reacting micropolar fluid from a vertical plate oscillating in its own plane adjacent to a porous medium. Thermal radiative, viscous dissipation and wall couple stress effects are included. The Rosseland diffusion approximation is used to model uni-directional radiative heat flux in the energy equation. Darcy’s model is adopted to mimic porous medium drag force effects. The governing two-dimensional conservation equations are normalized with appropriate variables and transformed into a dimensionless, coupled, nonlinear system of partial differential equations under the assumption of low Reynolds number. The governing boundary value problem is then solved under physically viable boundary conditions numerically with a finite element method based on the weighted residual approach. Graphical illustrations for velocity, micro-rotation (angular velocity), temperature and concentration are obtained as functions of the emerging physical parameters i.e. thermal radiation, viscous dissipation, first order chemical reaction parameter etc. Furthermore, friction factor (skin friction), surface heat transfer and mass transfer rates have been tabulated quantitatively for selected thermo-physical parameters. A comparison with previously published paper is made to check the validity and accuracy of the present finite element solutions under some limiting cases and excellent agreement is attained. Additionally, a mesh independence study is conducted. The model is relevant to reactive polymeric materials processing simulation

    Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect

    Get PDF
    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime

    Peristaltic flow and hydrodynamic dispersion of a reactive micropolar fluid-simulation of chemical effects in the digestive process

    Get PDF
    The hydrodynamic dispersion of a solute in peristaltic flow of a reactive incompressible micropolar biofluid is studied as a model of chyme transport in the human intestinal system with wall effects. The long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that average effective dispersion coefficient increases with amplitude ratio which implies that dispersion is enhanced in the presence of peristalsis. Furthermore average effective dispersion coefficient is also elevated with the micropolar rheological and wall parameters. Conversely dispersion is found to decrease with cross viscosity coefficient, homogeneous and heterogeneous chemical reaction rates. The present simulations provide an important benchmark for future chemo-fluid-structure interaction computational models

    Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Get PDF
    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted

    A high-order FEM formulation for free and forced vibration analysis of a nonlocal nonlinear graded Timoshenko nanobeam based on the weak form quadrature element method

    Get PDF
    The purpose of this paper is to provide a high-order finite element method (FEM) formulation of nonlocal nonlinear nonlocal graded Timoshenko based on the weak form quadrature element method (WQEM). This formulation offers the advantages and flexibility of the FEM without its limiting low-order accuracy. The nanobeam theory accounts for the von Kármán geometric nonlinearity in addition to Eringen’s nonlocal constitutive models. For the sake of generality, a nonlinear foundation is included in the formulation. The proposed formulation generates high-order derivative terms that cannot be accounted for using regular first- or second-order interpolation functions. Hamilton’s principle is used to derive the variational statement which is discretized using WQEM. The results of a WQEM free vibration study are assessed using data obtained from a similar problem solved by the differential quadrature method (DQM). The study shows that WQEM can offer the same accuracy as DQM with a reduced computational cost. Currently the literature describes a small number of high-order numerical forced vibration problems, the majority of which are limited to DQM. To obtain forced vibration solutions using WQEM, the authors propose two different methods to obtain frequency response curves. The obtained results indicate that the frequency response curves generated by either method closely match their DQM counterparts obtained from the literature, and this is despite the low mesh density used for the WQEM systems

    Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory

    Get PDF
    The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained
    • …
    corecore