48 research outputs found

    Comparative Study of SPA Mud from "Bacino Idrominerario Omogeneo dei Colli Euganei (B.I.O.C.E.)-Italy" and Industrially Optimized Mud for Skin Applications

    Get PDF
    The term "Salus per aquam (SPA) therapies" refers to therapeutic pathways that includes mud therapy. The therapeutic efficacy of a peloid depends on its chemical and mineralogical composition, as well as its technological properties. Considering the increasing use of clay-based products, it becomes essential to characterize peloids from a qualitative and quantitative point of view. Therefore, this research project aimed to develop a protocol that allows characterization of the chemical-physical composition of sludges collected from different areas of the Homogeneous Euganean Hills Hydromineral Basin (B.I.O.C.E.). The study established a comparative study both between different matrices and between the same matrices at different maturation times, including also a comparison with an industrialized product, that can be used at home, which maintains the characteristics of a natural mud. This research was developed studying the pH, grain size distribution, and chemical and mineralogical composition. Peloids are characterized by a neutral/basic pH and are divided into two categories from a granulometric point of view: The chemical composition allowed observation of numerous correlations between oxides present in the samples and to quantify the presence of heavy metals. Mineralogical analysis made it possible to identify and compare the composition of each sample, also according to the maturation time. Thanks to the methods adopted, important correlations were achieved

    Design and synthesis of99mTcN-labeled dextran-mannose derivatives for sentinel lymph node detection

    Get PDF
    Background: New approaches based on the receptor-targeted molecular interaction have been recently developed with the aim to investigate specific probes for sentinel lymph nodes. In particular, the mannose receptors expressed by lymph node macrophages became an attractive target and different multifunctional mannose derivate ligands for the labeling with99mTc have been developed. In this study, we report the synthesis of a specific class of dextran-based, macromolecular, multifunctional ligands specially designed for labeling with the highly stable [99mTc≡N]2+core. Methods: The ligands have been obtained by appending to a macromolecular dextran scaffold pendant arms bearing a chelating moiety for the metallic group and a mannosyl residue for allowing the interaction of the resulting macromolecular99mTc conjugate with specific receptors on the external membrane of macrophages. Two different chelating systems have been selected, S-methyl dithiocarbazate [H2N-NH-C(=S)SCH3=HDTCZ] and a sequence of two cysteine residues, that in combination with a monophosphine coligand, are able to bind the [99mTc≡N]2+core. Conclusions: High-specific-activity labeling has been obtained by simple mixing and heating of the [99mTc≡N]2+group with the new mannose-dextran derivatives

    El juego como herramienta metodológica para la enseñanza del inglés /

    No full text
    49 hojasPregradoLicenciado en Educación Básica con Énfasis en HumanidadesTrabajo de grado (Licenciado en Educación Básica - Humanidades) -- Corporación Universitaria del Caribe. Facultad de Humanidades y Educación. Programa de Licenciatura en Educación Básica con Énfasis en Humanidades, Lengua Castellana e Idioma Extranjero (Inglés). Sincelejo, 2014

    Synthesis and antimicrobial activity of dermaseptin S1 analogues

    Get PDF
    Dermaseptins are peptides found in the skin secretions of Phyllomedusinae frogs. These peptides exert lytic action on some microorganisms without substantial haemolysis. In an attempt to understand the antimicrobial activity of these peptides we designed several dermaseptin S1 (ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ) (DS1) analogues. All peptides were tested on the growth of prokaryotic (Grampositive and Gram-negative bacteria) and eukaryotic (the yeast Candida albicans and the protozoon Leishmania major) organisms. Our data showed a dose-dependent killing effect by most DS1 derivatives. Maximal antibacterial activity was displayed by a 16-mer peptide that was more active than native DS1

    Naphthoquinone amino acid derivatives, synthesis and biological activity as proteasome inhibitors

    Get PDF
    The ubiquitin-proteasome system has been largely investigated for its key role in protein degradation mechanisms that regulate both apoptosis and cell division. Because of their antitumour activity, different classes of proteasome inhibitors have been identified to date. Some of these compounds are currently employed in the clinical treatment of several types of cancer among which multiple myeloma. Here, we describe the design, chemistry, biological activity and modelling studies of a large series of amino acid derivatives linked to a naphthoquinone pharmacophoric group through variable spacers. Some analogues showed interesting inhibitory potency for the β1 and β5 subunits of the proteasome with IC50 values in the sub-µm range

    ANALOGHI DERMASEPTINICI AD ATTIVITA\u2019 ANTIMICROBICA

    No full text
    La presente invenzione riguarda peptidi analoghi della Dermaseptina S1 dotati di potente attivit\ue0 antimicrobica, composizioni farmaceutiche che li contengono e il loro impiego nel trattamento di disfunzioni, condizioni o stati patologici per i quali \ue8 richiesta un\u2019azione antimicrobica

    ANALOGHI DERMASEPTINICI AD ATTIVITA’ ANTIMICROBICA

    No full text
    La presente invenzione riguarda peptidi analoghi della Dermaseptina S1 dotati di potente attività antimicrobica, composizioni farmaceutiche che li contengono e il loro impiego nel trattamento di disfunzioni, condizioni o stati patologici per i quali è richiesta un’azione antimicrobica

    Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands

    Get PDF
    The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and β-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-β-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3-10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus

    In Vitro and in Vivo Pharmacological Characterization of the Neuropeptide S Receptor Antagonist [d-Cys(tBu)5]Neuropeptide S

    No full text
    Neuropeptide S (NPS) was identified as the endogenous ligand of an orphan receptor now referred to as the NPS receptor (NPSR). In the frame of a structure-activity study performed on NPS Gly5, the NPSR ligand [d-Cys(tBu)5]NPS was identified. [d-Cys(tBu)5]NPS up to 100 μM did not stimulate calcium mobilization in human embryonic kidney (HEK) 293 cells stably expressing the mouse NPSR; however, in a concentration-dependent manner, the peptide inhibited the stimulatory effects elicited by 10 and 100 nM NPS (pKB, 6.62). In Schild analysis experiments [d-Cys(tBu)5]NPS (0.1–100 μM) produced a concentration-dependent and parallel rightward shift of the concentration-response curve to NPS, showing a pA2 value of 6.44. Ten micromolar [d-Cys(tBu)5]NPS did not affect signaling at seven NPSR unrelated G-protein-coupled receptors. In the mouse righting reflex (RR) recovery test, NPS given at 0.1 nmol i.c.v. reduced the percentage of animals losing the RR in response to 15 mg/kg diazepam and their sleeping time. [d-Cys(tBu)5]NPS (1–10 nmol) was inactive per se but dose-dependently antagonized the arousal-promoting action of NPS. Finally, NPSR-deficient mice were similarly sensitive to the hypnotic effects of diazepam as their wild-type littermates. However, the arousal-promoting action of 1 nmol NPS could be detected in wild-type but not in mutant mice. In conclusion, [d-Cys(tBu)5]NPS behaves both in vitro and in vivo as a pure and selective NPSR antagonist but with moderate potency. Moreover, using this tool together with receptor knockout mice studies, we demonstrated that the arousal-promoting action of NPS is because of the selective activation of the NPSR protein

    Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans

    Get PDF
    Endocannabinoid peptides, or "pepcans," are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator, although with diverse effects. Despite active research on their pharmacological applications, very little is known about structure-activity relationships of pepcans. Different structures have been proposed for the nona-peptide, which has also been reported to form fibrillar aggregates. This might have affected the outcome and reproducibility of bioactivity studies. In an attempt of elucidating the determinants of both biological activity and aggregation propensity of Pepcan-9 and Pepcan-12, we have performed their structure characterization in solvent systems characterized by different polarity and pH. We have found that, while disordered in aqueous environment, both peptides display helical structure in less polar environment, mimicking the proteic receptor milieu. In the case of Pepcan-9, this structure is fully consistent with the observed modulation of the CB1. For Pepcan-12, whose allosteric binding site is still unknown, the presented structure is compatible with the binding at one of the previously proposed allosteric sites on CB1. These findings open the way to structure-driven design of selective peptide modulators of CB1
    corecore