6 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Role of grinding method on granular activated carbon characteristics

    No full text
    A coconut shell (AC1230CX) and a bituminous coal based (F400) granular activated carbon (GAC) were ground with mortar and pestle (MP), a blender, and a bench-scale ball milling unit (BMU). Blender was the most time-efficient for particle size reduction. Four size fractions ranging from 20 × 40 to 200 × 325 were characterized along with the bulk GACs. Compared to bulk GACs, F400 blender and BMU 20 × 40 fractions decreased in specific surface area (SSA, –23% and –31%, respectively) while smaller variations (–14% to 5%) occurred randomly for AC1230CX ground fractions. For F400, the blender and BMU size fraction dependencies were attributed to the combination of (i) radial trends in the F400 particle properties and (ii) importance of shear (outer layer removal) versus shock (particle fracturing) size reduction mechanisms. Compared to bulk GACs, surface oxygen content (At%-O1s) increased up to 34% for the F400 blender and BMU 20 × 40 fractions, whereas all AC1230CX ground fractions, except for the blender 100 × 200 and BMU 60 × 100 and 100 × 200 fractions, showed 25–29% consistent increases. The At%-O1s gain was attributed to (i) radial trends in F400 properties and (ii) oxidization during grinding, both of which supported the shear mechanism of mechanical grinding. Relatively small to insignificant changes in point of zero charge (pHPZC) and crystalline structure showed similar trends with the changes in SSA and At%-O1s. The study findings provide guidance for informed selection of grinding methods based on GAC type and target particle sizes to improve the representativeness of adsorption studies conducted with ground GAC, such as rapid small-scale column tests. When GACs have radial trends in their properties and when the target size fraction only includes larger particle sizes, manual grinding is recommended

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    No full text
    International audienceProgressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18

    IASIL Bibliography 2013

    No full text
    corecore