40 research outputs found

    The PeptideAtlas of the Domestic Laying Hen

    Get PDF
    Proteomics-based biological research is greatly expanded by high-quality mass spectrometry studies, which are themselves enabled by access to quality mass spectrometry resources, such as high-quality curated proteome data repositories. We present a PeptideAtlas for the domestic chicken, containing an extensive and robust collection of chicken tissue and plasma samples with substantial value for the chicken proteomics community for protein validation and design of downstream targeted proteome quantitation. The chicken PeptideAtlas contains 6646 canonical proteins at a protein FDR of 1.3%, derived from āˆ¼100ā€Æ000 peptides at a peptide level FDR of 0.1%. The rich collection of readily accessible data is easily mined for the purposes of data validation and experimental planning, particularly in the realm of developing proteome quantitation workflows. Herein we demonstrate the use of the atlas to mine information on common chicken acute-phase proteins and biomarkers for cancer detection research, as well as their localization and polymorphisms. This wealth of information will support future proteome-based research using this highly important agricultural organism in pursuit of both chicken and human health outcomes

    Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications

    No full text
    The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts listī—øthe draft human proteome including confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifications (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.1 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [www.thehpp.org/guidelines]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have been PE1 under the Guidelines v1.0 from 2012 but now have insufficient evidence due to the agreed-upon more stringent Guidelines v2.0 to reduce false positives. neXtProt and PeptideAtlas now both require two non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length. There are 2,949 missing proteins (PE2+3+4) as the baseline for submissions for this fourth annual C-HPP special issue of Journal of Proteome Research. PeptideAtlas has 14,629 canonical (plus 1187 uncertain and 1755 redundant) entries. GPMDB has 16,190 EC4 entries, and the Human Protein Atlas has 10,475 entries with supportive evidence. neXtProt, PeptideAtlas, and GPMDB are rich resources of information about post-translational modifications (PTMs), single amino acid variants (SAAVSs), and splice isoforms. Meanwhile, the Biology- and Disease-driven (B/D)-HPP has created comprehensive SRM resources, generated popular protein lists to guide targeted proteomics assays for specific diseases, and launched an Early Career Researchers initiative

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    Cassia grandis

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future

    The State of the Human Proteome in 2012 as Viewed through PeptideAtlas

    No full text
    The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LCā€“MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of āˆ¼12500 Swiss-Prot entries, leaving āˆ¼7500 gene products yet to be confidently cataloged. We characterize these ā€œPA-unseenā€ proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future
    corecore