947 research outputs found

    Statistical Analysis of Airport Network of China

    Full text link
    Through the study of airport network of China (ANC), composed of 128 airports (nodes) and 1165 flights (edges), we show the topological structure of ANC conveys two characteristics of small worlds, a short average path length (2.067) and a high degree of clustering (0.733). The cumulative degree distributions of both directed and undirected ANC obey two-regime power laws with different exponents, i.e., the so-called Double Pareto Law. In-degrees and out-degrees of each airport have positive correlations, whereas the undirected degrees of adjacent airports have significant linear anticorrelations. It is demonstrated both weekly and daily cumulative distributions of flight weights (frequencies) of ANC have power-law tails. Besides, the weight of any given flight is proportional to the degrees of both airports at the two ends of that flight. It is also shown the diameter of each sub-cluster (consisting of an airport and all those airports to which it is linked) is inversely proportional to its density of connectivity. Efficiency of ANC and of its sub-clusters are measured through a simple definition. In terms of that, the efficiency of ANC's sub-clusters increases as the density of connectivity does. ANC is found to have an efficiency of 0.484.Comment: 6 Pages, 5 figure

    Characterizing the network topology of the energy landscapes of atomic clusters

    Full text link
    By dividing potential energy landscapes into basins of attractions surrounding minima and linking those basins that are connected by transition state valleys, a network description of energy landscapes naturally arises. These networks are characterized in detail for a series of small Lennard-Jones clusters and show behaviour characteristic of small-world and scale-free networks. However, unlike many such networks, this topology cannot reflect the rules governing the dynamics of network growth, because they are static spatial networks. Instead, the heterogeneity in the networks stems from differences in the potential energy of the minima, and hence the hyperareas of their associated basins of attraction. The low-energy minima with large basins of attraction act as hubs in the network.Comparisons to randomized networks with the same degree distribution reveals structuring in the networks that reflects their spatial embedding.Comment: 14 pages, 11 figure

    Random graph model with power-law distributed triangle subgraphs

    Full text link
    Clustering is well-known to play a prominent role in the description and understanding of complex networks, and a large spectrum of tools and ideas have been introduced to this end. In particular, it has been recognized that the abundance of small subgraphs is important. Here, we study the arrangement of triangles in a model for scale-free random graphs and determine the asymptotic behavior of the clustering coefficient, the average number of triangles, as well as the number of triangles attached to the vertex of maximum degree. We prove that triangles are power-law distributed among vertices and characterized by both vertex and edge coagulation when the degree exponent satisfies 2<β<2.52<\beta<2.5; furthermore, a finite density of triangles appears as β=2+1/3\beta=2+1/3.Comment: 4 pages, 2 figure; v2: major conceptual change

    Exactly solvable scale-free network model

    Full text link
    We study a deterministic scale-free network recently proposed by Barab\'{a}si, Ravasz and Vicsek. We find that there are two types of nodes: the hub and rim nodes, which form a bipartite structure of the network. We first derive the exact numbers P(k)P(k) of nodes with degree kk for the hub and rim nodes in each generation of the network, respectively. Using this, we obtain the exact exponents of the distribution function P(k)P(k) of nodes with kk degree in the asymptotic limit of kk \to \infty. We show that the degree distribution for the hub nodes exhibits the scale-free nature, P(k)kγP(k) \propto k^{-\gamma} with γ=ln3/ln2=1.584962\gamma = \ln3/\ln2 = 1.584962, while the degree distribution for the rim nodes is given by P(k)eγkP(k) \propto e^{-\gamma'k} with γ=ln(3/2)=0.405465\gamma' = \ln(3/2) = 0.405465. Second, we numerically as well as analytically calculate the spectra of the adjacency matrix AA for representing topology of the network. We also analytically obtain the exact number of degeneracy at each eigenvalue in the network. The density of states (i.e., the distribution function of eigenvalues) exhibits the fractal nature with respect to the degeneracy. Third, we study the mathematical structure of the determinant of the eigenequation for the adjacency matrix. Fourth, we study hidden symmetry, zero modes and its index theorem in the deterministic scale-free network. Finally, we study the nature of the maximum eigenvalue in the spectrum of the deterministic scale-free network. We will prove several theorems for it, using some mathematical theorems. Thus, we show that most of all important quantities in the network theory can be analytically obtained in the deterministic scale-free network model of Barab\'{a}si, Ravasz and Vicsek. Therefore, we may call this network model the exactly solvable scale-free network.Comment: 18 pages, 5 figure

    Maximum flow and topological structure of complex networks

    Full text link
    The problem of sending the maximum amount of flow qq between two arbitrary nodes ss and tt of complex networks along links with unit capacity is studied, which is equivalent to determining the number of link-disjoint paths between ss and tt. The average of qq over all node pairs with smaller degree kmink_{\rm min} is kminckmin_{k_{\rm min}} \simeq c k_{\rm min} for large kmink_{\rm min} with cc a constant implying that the statistics of qq is related to the degree distribution of the network. The disjoint paths between hub nodes are found to be distributed among the links belonging to the same edge-biconnected component, and qq can be estimated by the number of pairs of edge-biconnected links incident to the start and terminal node. The relative size of the giant edge-biconnected component of a network approximates to the coefficient cc. The applicability of our results to real world networks is tested for the Internet at the autonomous system level.Comment: 7 pages, 4 figure

    Minimal asymptotic bases for the natural numbers

    Get PDF
    AbstractThe sequence A of nonnegative integers is an asymptotic basis of order h if every sufficiently large integer can be written as the sum of h elements of A. Let MhA denote the set of elements that have more than one representation as a sum of h elements of A. It is proved that there exists an asymptotic basis A such that MhA(x) = O(x1−1h+ϵ) for every ϵ > 0. An asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h. It is proved that there does not exist a sequence A that is simultaneously a minimal basis of orders 2, 3, and 4. Several open problems concerning minimal bases are also discussed

    Quantifying the connectivity of a network: The network correlation function method

    Full text link
    Networks are useful for describing systems of interacting objects, where the nodes represent the objects and the edges represent the interactions between them. The applications include chemical and metabolic systems, food webs as well as social networks. Lately, it was found that many of these networks display some common topological features, such as high clustering, small average path length (small world networks) and a power-law degree distribution (scale free networks). The topological features of a network are commonly related to the network's functionality. However, the topology alone does not account for the nature of the interactions in the network and their strength. Here we introduce a method for evaluating the correlations between pairs of nodes in the network. These correlations depend both on the topology and on the functionality of the network. A network with high connectivity displays strong correlations between its interacting nodes and thus features small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express them as matrix elements in the correlation matrix. From this information one can plot the correlation function for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio between this correlation length and the average path length of the network. Using this method we distinguish between a topological small world and a functional small world, where the latter is characterized by long range correlations and high connectivity. Clearly, networks which share the same topology, may have different connectivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic networks, but can be readily generalized to other types of networks.Comment: 10 figure

    Vibrational modes and spectrum of oscillators on a scale-free network

    Full text link
    We study vibrational modes and spectrum of a model system of atoms and springs on a scale-free network in order to understand the nature of excitations with many degrees of freedom on the scale-free network. We assume that the atoms and springs are distributed as nodes and links of a scale-free network, assigning the mass MiM_{i} and the specific oscillation frequency ωi\omega_{i} of the ii-th atom and the spring constant KijK_{ij} between the ii-th and jj-th atoms.Comment: 8pages, 2 figure

    Nonequilibrium Zaklan model on Apollonian Networks

    Full text link
    The Zaklan model had been proposed and studied recently using the equilibrium Ising model on Square Lattices (SL) by Zaklan et al (2008), near the critica temperature of the Ising model presenting a well-defined phase transition; but on normal and modified Apollonian networks (ANs), Andrade et al. (2005, 2009) studied the equilibrium Ising model. They showed the equilibrium Ising model not to present on ANs a phase transition of the type for the 2D Ising model. Here, using agent-based Monte-Carlo simulations, we study the Zaklan model with the well-known majority-vote model (MVM) with noise and apply it to tax evasion on ANs, to show that differently from the Ising model the MVM on ANs presents a well defined phase transition. To control the tax evasion in the economics model proposed by Zaklan et al, MVM is applied in the neighborhood of the critical noise qcq_{c} to the Zaklan model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.Comment: 11 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:1204.0386 and arXiv:0910.196

    On the semi-classical analysis of the groundstate energy of the Dirichlet Pauli operator in non-simply connected domains

    Full text link
    We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semi-classical parameter. We show, in particular, that the ground state energy of this Pauli operator will be exponentially small as the semi-classical parameter tends to zero and estimate this decay rate. This extends our results, discussing the results of a recent paper by Ekholm--Kova\v{r}\'ik--Portmann, to include also non-simply connected domains.Comment: 15 pages, 4 figure
    corecore