129 research outputs found

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure

    Intrinsic Optical Bistability of Photon Avalanching Nanocrystals

    Full text link
    Optically bistable materials respond to a single input with two possible optical outputs, contingent upon excitation history. Such materials would be ideal for optical switching and memory, yet limited understanding of intrinsic optical bistability (IOB) prevents development of nanoscale IOB materials suitable for devices. Here, we demonstrate IOB in Nd3+-doped KPb2Cl5 avalanching nanoparticles (ANPs), which switch with high contrast between luminescent and non-luminescent states, with hysteresis characteristic of bistability. We elucidate a nonthermal mechanism in which IOB originates from suppressed nonradiative relaxation in Nd3+ ions and from the positive feedback of photon avalanching, resulting in extreme, >200th-order optical nonlinearities. Modulation of laser pulsing tunes hysteresis widths, and dual-laser excitation enables transistor-like optical switching. This control over nanoscale IOB establishes ANPs for photonic devices in which light is used to manipulate light

    Antiferromagnetic Switching Driven by the Collective Dynamics of a Coexisting Spin Glass

    Full text link
    The theory behind the electrical switching of antiferromagnets is premised on the existence of a well defined broken symmetry state that can be rotated to encode information. A spin glass is in many ways the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. In this study, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3+δ_{1/3+\delta}NbS2_2, which is rooted in the electrically-stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. The use of a spin glass' collective dynamics to electrically manipulate antiferromagnetic spin textures has never been applied before, opening the field of antiferromagnetic spintronics to many more material platforms with complex magnetic textures.Comment: 7 pages, 4 Figures, supplement available on reasonable reques

    Indefinite and Bidirectional Near Infrared Nanocrystal Photoswitching

    Full text link
    Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6-8, to targeted pharmacology, optogenetics, and chemical reactivity9. These photoswitchable probes, including organic fluorophores and proteins, are prone to photodegradation, and often require phototoxic doses of ultraviolet (UV) or visible light. Colloidal inorganic nanoparticles have significant stability advantages over existing photoswitchable materials, but the ability to switch emission bidirectionally, particularly with NIR light, has not been reported with nanoparticles. Here, we present 2-way, near-infrared (NIR) photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-18, we demonstrate indefinite photoswitching of individual nanoparticles (>1000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modeling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable 2D and 3D multi-level optical patterning of ANPs, as well as optical nanoscopy with sub-{\AA} localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.Comment: 15 pages, 5 figure

    Deciphering chemical order/disorder and material properties at the single-atom level

    Get PDF
    Correlating 3D arrangements of atoms and defects with material properties and functionality forms the core of several scientific disciplines. Here, we determined the 3D coordinates of 6,569 iron and 16,627 platinum atoms in a model iron-platinum nanoparticle system to correlate 3D atomic arrangements and chemical order/disorder with material properties at the single-atom level. We identified rich structural variety and chemical order/disorder including 3D atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show for the first time that experimentally measured 3D atomic coordinates and chemical species with 22 pm precision can be used as direct input for first-principles calculations of material properties such as atomic magnetic moments and local magnetocrystalline anisotropy. This work not only opens the door to determining 3D atomic arrangements and chemical order/disorder of a wide range of nanostructured materials with high precision, but also will transform our understanding of structure-property relationships at the most fundamental level.Comment: 21 pages, 4 figure
    • …
    corecore