16 research outputs found

    A New Proposal Of Cellulosic Ethanol To Boost Sugarcane Biorefineries: Techno-economic Evaluation

    No full text
    Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction). Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production. © 2014 Juliana Q. Albarelli et al.2014Hofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: Energy and non-energy consumption (2012) Biomass and Bioenergy, 46, pp. 564-573. , 10.1016/j.biombioe.2012.06.038http://www.bioetanol.org.br/, Ctbe Laboratório Nacional de Ciência e Tecnologia do Bioetanol, 2013http://www.ctcanavieira.com.br/, Ctc Centro de Tecnologia Canavieira, 2013http://www.codistil.com.br/, Dedini S/a Indústrias de Base 2013http://www.raizen.com/, Raízen 2013GraalBio Cellulosic Ethanol Production Project, , http://www.chemicals-technology.com/projects/graalbio-cellulosic-ethanol- project-brazil/, Graalbio Alagoas, Brazil, 2012Furlan, F.F., Costa, C.B.B., Fonseca, G.D.C., Soares, R.D.P., Secchi, A.R., Cruz, A.J.G.D., Giordano, R.D.C., Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling (2012) Computers & Chemical Engineering, 43, pp. 1-9. , 10.1016/j.compchemeng.2012.04.002Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Maciel Filho, R., Bonomi, A., Second generation ethanol in Brazil: Can it compete with electricity production? (2011) Bioresource Technology, 102 (19), pp. 8964-8971. , 2-s2.0-80052360654 10.1016/j.biortech.2011.06.098Albarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2013) Chemical Engineering Research and Design, , 10.1016/j.cherd.2013.11.016Ensinas, A.V., Codina, V., Marechal, F., Albarelli, J., Silva, M.A., Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant (2013) Chemical Engineering Transactions, 35, pp. 523-528Cardona, C.A., Quintero, J.A., Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives (2010) Bioresource Technology, 101 (13), pp. 4754-4766. , 2-s2.0-77949875829 10.1016/j.biortech.2009.10.097De Souza, A.P., Leite, D.C.C., Pattathil, S., Hahn, M.G., Buckeridge, M.S., Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production (2013) BioEnergy Research, 6 (2), pp. 564-579. , 10.1007/s12155-012-9268-1Chimenez, T.A., Gehlen, M.H., Marabezi, K., Curvelo, A.A.S., Characterization of sugarcane bagasse by autofluorescence microscopy (2014) Cellulose, 21 (1), pp. 653-664. , 10.1007/s10570-013-0135-9Silva, M.A., Maugeri, F., Costa, F.A., (2010) Processo de Produção de Etanol a Partir de Hidrólise Enzimática de Biomassa, Processo de Separação da Matéria-prima de Hidrólise e uso de Células de Parênquima para Obtenção de Etanol, , Brazil Patent PI 2010 1004486-8Almeida, E., Cortez, L.A.B., Silva, M.A., Sugarcane bagasse pneumatic classification as a technology for reducing costs on enzymatic hydrolysis process (2013) Proceedings of the 28th International Society of Sugar Cane Technologists Congress, 28. , São Paulo, BrazilAlmeida, E., Estudo da Separação Pneumática de Frações de Bagaço de Cana e Sua Influência Na Hidrólise Enzimática, , http://www.bibliotecadigital.unicamp.br/document/?code=000866267, 2012(2010) Aspen Plus: Users Manual V. 7.2, , AspenTechStarzak, M., Mathlouthi, M., Temperature dependence of water activity in aqueous solutions of sucrose (2006) Food Chemistry, 96 (3), pp. 346-370. , 2-s2.0-28544434762 10.1016/j.foodchem.2005.02.052Wooley, R.J., Putsche, V., (2010) Development of an Aspen Plus Physical Property Database for Biofuels Components, , http://www.nrel.gov/docs/fy99osti/26157.pdfPalacios-Bereche, R., Mosqueira-Salazar, K.J., Modesto, M., Ensinas, A.V., Nebra, S.A., Serra, L.M., Lozano, M.-A., Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane (2013) Energy, 62, pp. 46-61. , 10.1016/j.energy.2013.05.010Rein, P., (2007) Cane Sugar Engineering, , Berlin, Germany Dr. Albert Bartens KGEnsinas, A.V., Modesto, M., Nebra, S.A., Serra, L., Reduction of irreversibility generation in sugar and ethanol production from sugarcane (2009) Energy, 34 (5), pp. 680-688. , 2-s2.0-65549101138 10.1016/j.energy.2008.06.001Linnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , 1st Rugby, UK IChemECarrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme and Microbial Technology, 46 (2), pp. 64-73. , 2-s2.0-71249111390 10.1016/j.enzmictec.2009.10.016Neves, M.A., Kimura, T., Shimizu, N., Nakajima, M., (2007) State of the Art and Future Trends in Bioethanol Production, , Global Science Books Dynamic Biochemistry, Process Biotechnology and Molecular BiologyBaudel, H.M., Hidrólise Para Produção de Etanol, , http://www.inovacao.unicamp.br/etanol/report/ Hidrolise%20Baudel%20Pr%C3%A9%20Tratamento%20e%20Hidr%C3%B3lise.pdf, Workshop tecnológico sobre hidrólise de materiais lignocelulósicos, 2012Pellegrini, L.F., De Oliveira Júnior, S., Burbano, J.C., Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills (2010) Energy, 35 (2), pp. 1172-1180. , 2-s2.0-76449086288 10.1016/j.energy.2009.06.011Pippo, W.A., Luengo, C.A., Alberteris, L.A.M., Garzone, P., Cornacchia, G., Energy recovery from sugarcane-trash in the light of 2nd generation biofuels. Part 1: Current situation and environmental aspects (2011) Waste and Biomass Valorization, 2 (1), pp. 1-16. , 2-s2.0-79952344161 10.1007/s12649-010-9048-0Neto, A.E., (2009) Manual de Conservação e Reúso de Água Na Agroindústria Sucroenergética, , Brasilia, Brazil Agência Nacional de Águas (ANA)Preço Médio da Cana-de-açúcar, , http://www.unicadata.com.br/listagem.php?idMn=61, Unica 2012Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnology and Bioengineering, 109 (4), pp. 1083-1087. , 2-s2.0-84857441283 10.1002/bit.24370(2012) Preço-teto de Leilão de Energia Desencoraja Investimentos em Bioeletricidade, , http://www.unica.com.br/noticias/show.asp?nwsCode=%7B3985304E-7262-4ED3- 8EDE-D85A38934B72%7D, UnicaAden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, , http://www.nrel.gov/docs/fy02osti/32438.pdf, National Renewable Energy Laboratory (NREL), 2010Sosa-Arnao, J.H., Nebra, S., Bagasse dryer role in the energy recovery of water tube boilers (2009) Drying Technology, 27 (4), pp. 587-594. , 2-s2.0-67650303343 10.1080/07373930802716326Luz, T.P.A., Bonan, L.F.B., Passolongo, R., Ramos, R.A.V., Avaliação termodinâmica e termoeconômica do aproveitamento energético da vinhaça num sistema de cogeração de energia de uma usina sucroalcooleira (2010) Proceedings of the Brazilian Conference on Dynamics, Control and Their Applications, 9, pp. 707-803. , Rio Claro, Brazil(2012) Chemical Engineering Plant Cost Index, , http://www.che.com/pci/, Cepci(2012), http://www.ambiente.sp.gov.br/etanolverde/zoneamento-agroambiental/, Secretaria de Estado do Meio Ambiente (SMA) Zoneamento Agroambiental para o Setor SucroalcooleiroHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, , NRELTP-5100-47764 Golden, Colo, USA National Renewable Energy Laborator

    Combined First And Second Generation Ethanol Production: Analysis Of Supercritical Hydrolysis

    No full text
    Supercritical hydrolysis has been studied for the production of lignocellulosic ethanol to overcome the high cost and long reaction time of enzymatic hydrolysis. Aspen Plus® was used to simulate ethanol and energy production at a conventional autonomous distillery processing 500 ton of sugarcane/hr and a steam based cogeneration system. Thermal integration of the autonomous distillery was conducted using the Pinch Point Method. A reduction of 32% at the bagasse consumption after thermal integration to supply the energy requirements of the autonomous distillery was observed. In Case 1, after thermal integration of first and second generation ethanol production, 43% of bagasse was designated to ethanol production. At this configuration, it was produced 88 L of ethanol/ton of sugarcane, an increase of 13% to the conventional process. In Case 2, an increase of 13% in ethanol production was observed. A different configuration of supercritical hydrolysis considering the direct hydrolysis of the material without pretreatment and co-fermentation of the C5 and C6 monomers could possibly result in higher ethanol productivity per Mw spent. This is an abstract of a paper presented at the CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES (Prague, Czech Republic 8/25-29/2012).Ceska Rafinerska,DEZA,Synpo,BorsodChem,Prazska Plynarenska a.s

    Analysis Of Process Steam Demand Reduction And Electricity Generation In Sugar And Ethanol Production From Sugarcane

    No full text
    The sugarcane industry represents one of the most important economic activities in Brazil, producing sugar and ethanol for the internal and external markets. Moreover, thermal and electric energy is produced for self-consumption, using sugarcane bagasse as fuel in cogeneration plants. Almost all the sugarcane plants in Brazil are self-sufficient in terms of energy supply and in the last few years some of them have been selling their surplus electricity for the grid. The reduction of process steam requirements and the use of more efficient cogeneration systems are new alternatives to increase the surplus electricity generation. The purpose of this paper is to analyze the steam demand reduction on sugar and ethanol process and alternatives for cogeneration systems in sugarcane plants, aiming at the surplus electricity generation increase. © 2007 Elsevier Ltd. All rights reserved.481129782987Macedo, I.C., Verde Leal, M.R.L., Hassuani, S.J., Sugarcane residues for power generation in the sugar/ethanol mills in Brazil (2001) Energy for Sustainable Development, 5, pp. 77-82Verde Leal, M.R.L., Macedo, I.C., Technical evolution of power generation systems in sugar/ethanol mills (2004) Biomassa Energia, 1, pp. 245-253. , In PortugueseChristodoulou, P., The Pinch Technology and the energy reduction in the beet sugar process (1992) Zuckerind, 117 (3), pp. 169-175Tekin, T., Bayramoglu, M., Exergy and structural analysis of raw juice production and steam-power units of a sugar production plant (2001) Energy, 26, pp. 287-297Bayrak, M., Midilli, A., Nurveren, K., Energy and exergy analyses of sugar production stages (2003) Int J Energy Res, 27, pp. 989-1001Ram, J.R., Benerjee, R., Energy and cogeneration targeting for a sugar factory (2003) Appl Therm Eng, 23, pp. 1567-1575Paz, D., Cárdenas, J., Análisis exergético de um sistema de calentamiento-evaporación-cocimiento (1997) Int Sugar J, 99, pp. 1182SRein, P., (2007) Cane sugar engineering, , Verlag Dr. Albert Bartens, Berlin, GermanyUpadhiaya, U.C., Cogeneration of steam and electric power (1992) Int Sugar J, 94, p. 1117Consonni, S., Larson, E.D., Biomass-gasifier/aeroderivaive Gas turbine combined cycles: part B - performance calculations and economic assessment (1994) IGTI, ASME COGEN-TURBO, 9, pp. 611-623Faaij, A., Gasification of Biomass Wastes and Residues for Electrcity Production (1997) Biomass Bioenergy, 12 (6), pp. 387-407Consonni, S., Larson, E.D., Biomass-gasifier/aeroderivaive gas turbine combined cycles: part A - technologies and performance modeling, assessment (1994) IGTI, ASME COGEN-TURBO, 9, pp. 599-610Rodrigues, M., Walter, A., Faaij, A., Co-firing natural gas in biomass integrated gasification/combined cycle system (2003) Energy, 28, pp. 1115-1131Horlock, J.H., (1997) Cogeneration - combined heat and power (CHP) thermodynamics and economics, , Krieger Publishing Company, Malabar, FloridaSzargut, J., Morris, D.R., Steward, F.R., (1988) Chemical and metallurgical processes, , Hemisphere Publishing Corporation, New Yor

    Product Diversification To Enhance Economic Viability Of Second Generation Ethanol Production In Brazil: The Case Of The Sugar And Ethanol Joint Production

    No full text
    Commercial simulator Aspen Plus® was used to simulate the conventional processes of the autonomous distillery producing ethanol and the joint production of sugar and ethanol. Changes in conventional processes were evaluated to increase electricity and second generation ethanol production using bagasse fine fraction composed by parenchyma cells (P-fraction). The evaluated processes were thermal and water integrated. The results indicated that the integration of the second generation process to the conventional processes was possible after thermal and water integration. The economic analysis showed that the second generation process integrated to the joint production presented lower payback time, 2.3 years, in comparison with this process integrated to the autonomous distillery, 4.7 years. Due to the high enzyme costs, the cases without second generation ethanol production presented higher economic viability. Product diversification, as sugar and ethanol production in the same site, lowered the impact of enzymes cost on the payback time of second generation process, showing that the integration of the second generation ethanol production process to the conventional sugar production process could be a step to cellulosic ethanol production feasibility in sugarcane mills. © 2013 The Institution of Chemical Engineers.92814701481Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, Technical Report NREL/TP-510-32438 (National Renewable Energy Laboratory, Colorado, USA), pp. 1-88Almeida, E., (2012) Study of the Pneumatic Separation of Sugarcane Bagasse Fractions and its Influence on Enzymatic Hydrolysis, , School of Chemical Engineering-University of Campinas, Campinas, SP, Brazil, (Master Thesis)Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R., Biorefining: computer aided tools for sustainable design and analysis of bioethanol production (2009) Chem. Eng. Res. Des., 87, pp. 1171-1183(2010) Aspen Plus, Users Manual v. 7.2, , ASPENTECHBaral, A., Bakshi, B.R., Smith, R.L., Assessing resource intensity and renewability of cellulosic ethanol technologies using Eco-LCA (2012) Environ. Sci. Technol., 46, pp. 2436-2444Bessa, L.C.B.A., Batista, F.R.M., Meirelles, A.J.A., Double-effect integration of multicomponent alcoholic distillation columns (2012) Energy, 45, pp. 603-612(2008) Sugarcane-based Bioethanol. Energy for Sustainable Development, , BNDES, Rio de Janeiro, BNDESCardona, C.A., Quintero, J.A., Paz, I.C., Production of bioethanol from sugarcane bagasse: status and perspectives (2010) Bioresour. Technol., 101, pp. 4754-4766Carrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2 catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme Microb. Technol., 46, pp. 64-73(2012) Chemical Engineering Plant Cost Index, , http://www.che.com/pci/, (accessed 05.10.12) CEPCICorrea Neto, V., Ramon, D., (2010) Análise de opções tecnológicas para projetos de co-geração no setor sucro-alcooleiro, , http://www.nuca.ie.ufrj.br/infosucro/biblioteca/bim_CorreaNeto_OpcoesCogeracao.pdf, (accessed 06 December 2010)Cunha, L.R.E., Peloso, E.R., (2012) Fábrica compacta de açúcar produção de 36.000 sc/dia com cozimento contínuo Simtec, , http://www.procknor.com.br/, (accessed 23.08.12)Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., MacielFilho, R., Bonomi, A., Second generation ethanol in Brazil: can it compete with electricity production? (2011) Bioresour. Technol., 102, pp. 8964-8971Dias, M.O.S., Ensinas, A.V., Nebra, S.A., Maciel Filho, R., Rossell, C.E.V., Maciel, M.R.W., Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process (2009) Chem. Eng. Res. Des., 87, pp. 1206-1216Dias, M.O.S., Da Cunha, M.P., Maciel Filho, R., Bonomi, A., Jesus, C.D.F., Rossell, C.E.V., Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods (2011) J. Ind. Microbiol. Biotechnol., 38, pp. 955-966Eijsberg, R., (2006) The Design and Economic Analysis of a Modern Bio-ethanol Factory Located in Brazil, , Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands, 98 f (Master Thesis)Elia Neto, A., (2009) Manual de conservação e reuso de água na agroindústria sucroenergética, , Agência Nacional de Águas (ANA), BrasiliaEnsinas, A.V., Modesto, M., Nebra, A.S., Serra, L., Reduction of irreversibility generation in sugar and ethanol production from sugarcane (2009) Energy, 34, pp. 680-688Furlan, F.F., Costa, C.B.B., Cruz, A.J.G., Secchi, A.R., Soares, R.P., Giordano, R.C., Integrated tool for simulation and optimization of a first and second generation ethanol-from-sugarcane production plant (2012) Comput. Aided Chem. Eng., 30, pp. 82-85Furlan, F.F., Costa, C.B.B., Fonseca, G.D.C., Soares, R.D.P., Secchi, A.R., Cruz, A.J.G.D., Giordano, R.D.C., Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling (2012) Comput. Chem. Eng., 43, pp. 1-9Hofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: energy and non-energy consumption (2012) Biomass Bioenergy, 46, pp. 564-573Junqueira, T.L., Dias, M.O.S., Cavalett, O., Jesus, C.D.F., Cunha, M.P., Rossell, C.E.V., MacielFilho, R., Bonomi, A., Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives (2012) Comput. Aided Chem. Eng., 30, pp. 177-181Kemp, I.C., (2007) Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient use of Energy, , Elsevier, OxfordKim, Y., Hendrickson, R., Mosier, N.S., Ladisch, M.R., Liquid hot water pretreatment of cellulosic biomass (2009) Methods Mol. Biol., 581, pp. 93-102Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnol. Bioenergy, 109, pp. 1083-1087Kostin, A.M., Guillén-Gosálbez, G., Mele, F.D., Bagajewicz, M.J., Jiménez, L., Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty (2012) Chem. Eng. Res. Des., 90, pp. 359-376Leite, R.C.C., (2009) Bioetanolcombustivel: uma oportunidade para o Brasil, , Centro de Gestão e Estudos Estratégicos, BrasíliaLinnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , IChemE, RugbyLuz, T.P.A., Bonan, L.F.B., Passolongo, R., Ramos, R.A.V., Avaliação termodinâmica e termoeconÔmica do aproveitamento energético da vinhaça num sistema de cogeração de energia de uma usina sucroalcooleira (2010) Brazilian Conference on Dynamics, Control and their Applications, vol. 9, pp. 707-803Meirelles, A., Weiss, S., Herfurth, H., Ethanol dehydration by extractive distillation (1992) J. Chem. Technol. Biotechnol., 53, pp. 181-188Neves, M.A., Kimura, T., Shimizu, N., Nakajima, M., State of the art and future trends in bioethanol production (2007) Dynamic Biochemistry, Process Biotechnology and Molecular Biology, Global Science BooksNolasco, J., DeMassaguer, P.R., Thermal degradation kinetics of sucrose, glucose and fructose in sugarcane must for bioethanol production (2006) J. Food Process Eng., 29, pp. 462-477Ojeda, K., Ávila, O., Suárez, J., Kafarov, V., Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production-part 1 (2011) Chem. Eng. Res. Des., 89, pp. 270-279Palacios-Bereche, R., Mosqueira-Salazar, K.J., Modesto, M., Ensinas, A.V., Nebra, S.A., Serra, L.M., Lozano, M.-A., Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane (2013) Energy, 62, pp. 46-61Peláez-Samaniego, M.R., (2007) Use of a Biofuel Obtained From the Fast Pyrolysis of Sugarcane Trash in an Otto Engine, , School of Mechanical Engineering-University of Campinas, Campinas, SP, Brazil, (Master Thesis)Pellegrini, L.F., Oliveira Júnior, S., Burbano, J.C., Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane Mills (2010) Energy, 35, pp. 1172-1180Rein, P., (2007) Cane Sugar Engineering, , Verlag Dr. Albert Bartens KG, BerlinSilva, M.A., Maugeri, F., Costa, F.A., (2010), Processo de produção de etanol a partir de hidrólise enzimática de biomassa, processo de separação da matéria-prima de hidrólise e uso de células de parênquima para obtenção de etanol. Brazil Patent PI 1004486-8(2012) Zoneamento Agroambiental para o Setor Sucroalcooleiro, , http://www.ambiente.sp.gov.br/etanolverde/zoneamento-agroambiental/, (accessed 01.06.12) SMA - Secretaria de Estado do Meio AmbienteSosa-Arnao, J.H., Nebra, S., Bagasse dryer role in the energy recovery of water tube boilers (2009) Dry. Technol., 27, pp. 587-594Starzak, M., Mathlouthi, M., Temperature dependence of water activity in aqueous solutions of sucrose (2006) Food Chem., 96, pp. 346-370Stephen, J.D., Mabee, W.E., Saddler, J.N., Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction (2012) Biofuel. Bioprod. Bioref., 6, pp. 159-176(2010) Usina Virtual, , http://www.unica.com.br/usina-virtual/video-new/usina-virtual.htm, (accessed 24.08.10) UNICA(2012) Preço médio da cana-de-açúcar, , http://www.unicadata.com.br/listagem.php%3FidMn=61, (accessed 10.06.12) UNICA(2012) Preço-teto de leilão de energia desencoraja investimentos em bioeletricidade, , http://www.unica.com.br/noticias/show.asp%3FnwsCode=%7B3985304E-7262-4ED3-8EDE-D85A38934B72%7D, (accessed 10.06.12) UNICA(2010) Filial Iturama otimiza adubação de seus canaviais, , http://www.usinacoruripe.com.br/noticias/index.asp%3FvCod=409, (accessed 25.11.10) USINA CORURIPE(2010) O Processo de fabricação de açúcar e álcool na Usina Ester, , http://www.usinaester.com.br/Produtos/produtos.html, (accessed 17.08.10) USINA ESTERWooley, R.J., Putsche, V., Development of an ASPEN PLUS physical property database for biofuels components (1996) Technical Report NREL/MP-425-20685, pp. 1-36. , National Renewable Energy Laboratory, Colorado, US

    Mechanical Vapour Recompression Incorporated To The Ethanol Production From Sugarcane And Thermal Integration To The Overall Process Applying Pinch Analysis

    No full text
    Vapour recompression is a means of upgrading energy by the compressing of a lower pressure vapour up to a higher pressure, thus making the energy more available to do useful work. There are two types of vapour recompression: thermo-compression and mechanical recompression. Thermo-compression uses high pressure steam through a nozzle to compress a lower pressure vapour to an intermediate pressure. On the other hand, in mechanical recompression "mechanical" means that the compression task is done through the expenditure of mechanical energy for instance a steam turbine driven a compressor. Other means of driving could be also include an electric motor or an internal combustion engine. In both of cases the main advantage of vapour recompression is that it is not necessary to supply the latent heat of vaporization to the vapour being compressed. The aim of this study is to evaluate the possibilities of the incorporation of mechanical vapour recompression in the ethanol production process from the energy point of view. Thus mechanical vapour recompression is integrated to the juice evaporation system which is composed by a multiple effect evaporator. Simulations in Aspen Plus were accomplished to perform the mass and energy balances. Results showed that the introduction of vapour recompression promoted a reduction in steam consumption of approximately 10 % in evaporation system and 4% in overall process. In order to further reduce the steam consumption of the plant, Pinch Analysis was applied to integrate the vapour recompression process coupled to evaporation system to all available streams in ethanol production process..39Special Issue397402Baloh, T., Sugar of a beet sugar factory in which vapour compression is applied (1984) Sugar Journal, , September, 1984Boggild, K., Andersen, K., Energy reduction by vapour compression - An example from Naskskov sugar factory (1989) Zuckerind, 114, pp. 478-481Dias, M.O.S., Modesto, M., Ensinas, A.V., Nebra, S.A., Maciel, R.F., Rossell, C.E.V., Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems (2011) Energy, 36, pp. 3691-3703(2014) Evaporation Technology Using Mechanical Vapour Recompression, , www.niroinc.com, GEA accessed 26.02.2014Kiss, A.A., Landaeta, S.J.F., Infante, F.C.A., Mastering heat pumps selection for energy efficient distillation (2012) Chemical Engineering Transactions, 29, pp. 397-402Palacios-Bereche, R., Ensinas, A.V., Nebra, S.A., Energy consumption in ethanol production by enzymatic hydrolisis - The integration with the conventional process using Pinch Analysis (2011) Chemical Engineering Transactions, 24, pp. 1189-1194Palacios-Bereche, R., Mosqueira-Salazar, K.J., Modesto, M., Ensinas, A.V., Nebra, S.A., Serra, L.M., Lozano, M.A., Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane (2013) Energy, 62, pp. 46-61Rein, P., (2007) Cane Sugar Engineering, , Verlag Dr. Albert Bartens K. G Berlin, GermanyVan Der Poel, P.W., Schiweck, H., Schwartz, T., (1998) Sugar Technology, Beet and Cane Sugar Manufacture, , Verlag Dr. Albert Bartens K. G, Berlin, German
    corecore