8 research outputs found

    Antibacterial E ect of Chitosan鈥揋old Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model

    Get PDF
    Pathogenic bacteria have the ability to develop antibiotic resistance mechanisms. Their action consists mainly in the production of bacterial enzymes that inactivate antibiotics or the appearance of modifications that prevent the arrival of the drug at the target point or the alteration of the target point itself, becoming a growing problem for health systems. Chitosan鈥揼old nanoparticles (Cs-AuNPs) have been shown as effective bactericidal materials avoiding damage to human cells. In this work, Cs-AuNPs were synthesized using chitosan as the reducing agent, and a systematic analysis of the influence of the synthesis parameters on the size and zeta potential of the Cs-AuNPs and their UV-vis spectra was carried out. We used a simulation model to characterize the interaction of chitosan with bacterial membranes, using a symmetric charged bilayer and two different chitosan models with different degrees of the chitosan amine protonation as a function of pH, with the aim to elucidate the antibacterial mechanism involving the cell wall disruption. The Cs-AuNP antibacterial activity was evaluated to check the simulation model

    Catalytic and molecular properties of rabbit liver carboxylesterase acting on 1,8-cineole derivatives

    No full text
    Rabbit liver carboxylesterase (rCE) was evaluated as the catalyst for the enantioselective hydrolysis of (+/-)-3-endo-acetyloxy-1,8-cineole [(+/-)-4], which yields (1S,3S,4R)-(+)-3-acetyloxy-1,8-cineole [(+)-4] and (1R,3R,4S)-(-)-3-hydroxy-1,8-cineole [(-)-3]. Enantioselective asymmetrization of meso-3,5-diacetoxy-1,8-cineol (5) gives (1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole (6), with high enantioselectivity. rCE has been chosen to perform both experiments and molecular modeling simulations. Docking simulations combined with molecular dynamics calculations were used to study rCE-catalyzed enantioselective hydrolysis of cineol derivatives. Both compounds were found to bind with their acetyl groups stabilized by hydrogen bond interactions between their oxygen atoms and Ser221

    Catalytic and molecular properties of rabbit liver carboxylesterase acting on 1,8-cineole derivatives

    No full text
    Rabbit liver carboxylesterase (rCE) was evaluated as the catalyst for the enantioselective hydrolysis of (+/-)-3-endo-acetyloxy-1,8-cineole [(+/-)-4], which yields (1S,3S,4R)-(+)-3-acetyloxy-1,8-cineole [(+)-4] and (1R,3R,4S)-(-)-3-hydroxy-1,8-cineole [(-)-3]. Enantioselective asymmetrization of meso-3,5-diacetoxy-1,8-cineol (5) gives (1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole (6), with high enantioselectivity. rCE has been chosen to perform both experiments and molecular modeling simulations. Docking simulations combined with molecular dynamics calculations were used to study rCE-catalyzed enantioselective hydrolysis of cineol derivatives. Both compounds were found to bind with their acetyl groups stabilized by hydrogen bond interactions between their oxygen atoms and Ser221
    corecore