56 research outputs found

    Temporal evolution of sweet oilfield corrosion scale: Phases, morphologies, habits, and protection

    Get PDF
    Electrochemical measurements and substrate analysis have been employed to study the corrosion of iron in sweet solution (pH = 6.8, T = 80 °C) over a period of 288 h. Correlated with decreasing corrosion rate, diffraction, microscopy, and spectroscopy data reveal the evolution of adhered sweet corrosion scale. Initially, it is comprised of two phases, siderite and chukanovite, with the latter affording little substrate protection. Subsequently, as the scale becomes highly protective, siderite is the sole component. Notably, siderite crystals are concluded to display a somewhat unexpected habit, which may be a trigger for local breakdown of protective sweet scales

    Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process

    Get PDF
    A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies

    Evidence of Transfer by Conjugation of Type IV Secretion System Genes between Bartonella Species and Rhizobium radiobacter in Amoeba

    Get PDF
    Background: Bartonella species cospeciate with mammals and live within erythrocytes. Even in these specific niches, it has been recently suggested by bioinformatic analysis of full genome sequences that Lateral Gene Transfer (LGT) may occur but this has never been demonstrated biologically. Here we describe the sequence of the B. rattaustraliani (AUST/NH4 T) circular plasmid (pNH4) that encodes the tra cluster of the Type IV secretion system (T4SS) and we eventually provide evidence that Bartonella species may conjugate and exchange this plasmid inside amoeba. Principal Findings: The T4SS of pNH4 is critical for intracellular viability of bacterial pathogens, exhibits bioinformatic evidence of LGT among bacteria living in phagocytic protists. For instance, 3 out of 4 T4SS encoding genes from pNH4 appear to be closely related to Rhizobiales, suggesting that gene exchange occurs between intracellular bacteria from mammals (bartonellae) and plants (Rhizobiales). We show that B. rattaustraliani and Rhizobium radiobacter both survived within the amoeba Acanthamoeba polyphaga and can conjugate together. Our findings further support the hypothesis that tra genes might also move into and out of bacterial communities by conjugation, which might be the primary means of genomic evolution for intracellular adaptation by cross-talk of interchangeable genes between Bartonella species and plant pathogens. Conclusions: Based on this, we speculate that amoeba favor the transfer of genes as phagocytic protists, which allows fo

    Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye

    Get PDF
    Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P. through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz from the Unidad de Proteómica, Universidad Complutense de Madrid – Parque Científico de Madrid, Spain for excellent technical assistance in the successful implementation of all proteomics procedures including peptide identification, and Joana Tulha from the CBMA, Universidade do Minho, Portugal, for helping with the SDS-PAGE experiments, and the tedious and laborious ECM extraction procedures. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with the dataset identifier PXD001133. We would like to thank the PRIDE team for all the help and support during the submission process.info:eu-repo/semantics/publishedVersio

    Cluster properties of sensitized grain boundaries in Type 304 stainless steel

    No full text
    Electron Backscatter Diffraction (EBSD) and Image Analysis (IA) techniques have been coupled with Double Loop-Electrochemical Potentiokinetic Reactivation (DL-EPR) testing to characterize the development of sensitized grain boundary clusters in Type 304 stainless steel. DL-EPR testing revealed differences in the sensitization response of thermo-mechanically processed microstructures, despite similar grain size and grain boundary character distributions (GBCD). The same sensitization treatment produced different distributions of sensitized grain boundary clusters, and susceptible boundary clusters percolated through all microstructures after sensitization treatments of 4 hrs at 650°C. Assessment of the connectivity of ∑3 n (1≤n≤3) grain boundaries in EBSD maps showed a trend to longer clusters with increasing ∑3 n (1≤n≤3) fractions. A comparison to DL-EPR data showed the attacked grain boundary networks were generally in excess of 80% of the potentially susceptible grain boundary fraction. © 2009 by NACE International

    The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.

    No full text
    Grain boundary engineering of austenitic stainless steel, through the introduction of plastic strain and thermal annealing, can be used to develop microstructures with improved resistance to inter-granular degradation. The influence of low-strain thermo-mechanical processing on grain boundary network development, with systematic variations of annealing treatments, has been investigated. Three stages of the microstructure development during grain boundary engineering in low-strain processing conditions are identified, and correlated with changes in grain boundary character and deviation distributions. Low-energy connected length segments at triple junctions, which have been proposed to be responsible for crack bridging during inter-granular stress corrosion cracking, can be influenced by the choice of the annealing treatment parameters. The development of individual grain boundary length segments of different character showed consistent trends with increasing grain size. Crack length predictions are consistent with the beneficial effect of designing microstructures with high fractions of twin grain boundaries and smaller grain size

    Surface grain boundary engineering of shot-peened type 304 stainless steel

    No full text
    The effect of thermal annealing on shot-peened Type 304 stainless steel has been examined using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The objective was to evaluate the potential for surface property control by grain boundary engineering. The near surface microstructure of shot-peened material showed a gradual change of the grain boundary character distribution with depth. Twin (∑3) and higher order twin grain boundaries (∑9, ∑27) identified closer to the shot-peened surface had significant deviations from their optimum misorientation. The subsequent application of annealing treatments caused depth-dependent changes of the near surface microstructure, with variations in grain size, low ∑ CSL grain boundary populations and their deviation from optimum misorientation. Microstructure developments were dependent on the applied heat treatment, with the near surface microstructures showing similarities to microstructures obtained through bulk thermo-mechanical processing. Shot peening, followed by annealing, may therefore be used to control the near surface microstructure of components. © 2007 Springer Science+Business Media, LLC
    corecore