59 research outputs found

    Non-invasive imaging in the diagnosis of acute viral myocarditis

    Get PDF
    Autopsy series of consecutive cases have demonstrated an incidence of myocarditis at approximately 1–10%; on the contrary, myocarditis is seriously underdiagnosed clinically. In a traditional view, the gold standard has been myocardial biopsy. However, it is generally specific but invasive and less sensitive, mostly because of the focal nature of the disease. Thus, non-invasive approaches to detect myocarditis are necessary. The traditional diagnostic tools are electrocardiography, laboratory values, especially troponin T or I, creatine kinase and echocardiography. For a long period, nuclear technique with indium-111 antimyosin antibody has been used as a diagnostic approach. In the last years, the use of this technique has declined because of radiation exposure and 48-h delay in obtaining imaging after injection to prevent blood pool effect. Thus, a non-invasive diagnostic approach without radiation and online image availability has been awaited. Cardiac magnetic resonance imaging has these promising characteristics. With this technique, it is possible to analyse inflammation, oedema and necrosis in addition to functional parameters such as left ventricular function, regional wall motion and dimensions. Thus, cardiovascular magnetic resonance imaging has emerged as the most important imaging tool in the diagnostic procedure and the review focus on this field. But there are also advances in echocardiography and computer tomography, which are described in detail

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Creep strength of centrifugally cast al-rich tial alloys

    No full text
    High-temperature creep of a binary Al60Ti40 (at.%) alloy in the as-cast state and after annealing at 1223 K for 200 h which produced nearly lamellar gamma-TiAl + r-Al2Ti microstructure was studied utilizing creep compression tests in a temperature range between 1173 and 1323 K in air. The material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical scanning (SEM) and transmission electron microscopy (TEM) as well as X-ray diffraction (XRD) analyses. It is shown that the alloy exhibits reasonable creep resistance at 1173 K, especially in relation to its low density of around 3.8 g/cm(3). Stress exponents calculated as n = Delta log (strain rate)/Delta log (stress) = 4 were found to be relatively constant for the temperature and stress regime investigated. This indicates that dislocation climb may be the rate controlling creep mechanism. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded activation energies for creep of around Q = 457 kJ/mol in the as-cast condition. This value is significantly higher than those found in literature for interdiffusion of Al or Ti in gamma-TiAl. It is concluded that the difference is a due to the instability of the microstructure of the as-cast multi-phase alloy. (C) 2009 Published by Elsevier B.
    • …
    corecore