13 research outputs found
Inverse problems with the digital image correlation: approach and applications
A viable approach to solve inverse problems in elasticity is proposed. It is based on regression algorithms to estimate materials and/or loading parameters by fitting the experimentally-evaluated displacement field to representative analytical solutions.
Displacements are measured by the digital image correlation (DIC) technique and they are used as input for numerical procedures able to minimize the estimation errors of the unknowns and to quantify the unavoidable rigid body motions of the samples/components. In addition, thanks to ad-hoc developed iterative algorithms, non-linear phenomena related to high and localized stress/strain states, can be captured successfully. This latter represents a relevant novelty of the methodology as it allows to investigate plasticity-induced mechanisms in solid mechanics which are impossible to analyze with more traditional DIC-based approaches.
Three different case studies are considered: 1) estimation of the stress intensity factor in fracture mechanics problems, 2) estimation of the elastic properties of a material by the Brazilian tests, 3) estimation of the contact pressure generated by thermally activated shape memory alloy (SMA) rings used for pipe coupling.
The reliability and the accuracy of the method is demonstrated through systematic comparisons of the results with conventional techniques in experimental mechanics
Design of custom cranial prostheses combining manufacturing and drop test finite element simulations
AbstractIn this work, impact puncture tests (drop tests) have been used to both tune numerical models and correlate the performance of customised titanium cranial prostheses to the manufacturing process. In fact, experimental drop tests were carried out either on flat disk-shaped samples or on prototypes of titanium cranial prostheses (Ti-Gr5 and Ti-Gr23 were used) fabricated via two innovative sheet metal forming processes (the super plastic forming (SPF) and the single point incremental forming (SPIF)). Results from drop tests on flat disk-shaped samples were used to define the material behaviour of the two investigated alloys in the finite element (FE) model, whereas drop tests on cranial prostheses for validation purposes. Two different approaches were applied and compared for the FE simulation of the drop test: (i) assuming a constant thickness (equal to the one of the undeformed blank) or (ii) importing the thickness distribution determined by the sheet forming processes. The FE model of the drop test was used to numerically evaluate the effect of the manufacturing process parameters on the impact performance of the prostheses: SPF simulations were run changing the strain rate and the tool configuration, whereas SPIF simulations were run changing the initial thickness of the sheet and the forming strategy. The comparison between numerical and experimental data revealed that the performance in terms of impact response of the prostheses strongly depends on its thickness distribution, being strain hardening phenomena absent due to the working conditions adopted for the SPF process or to the annealing treatment conducted after the SPIF process. The manufacturing parameters/routes, able to affect the thickness distribution, can be thus effectively related to the mechanical performance of the prosthesis determined through impact puncture tests
low to high cycle fatigue properties of a niti shape memory alloy
Abstract Low-to-high cycle fatigue behavior of a pseudoelastic NiTi SMA was analyzed. The evolution of both global and local strain were captured during fatigue tests. Local strains were measured in-situ by the digital image correlation (DIC) technique. Significant differences were observed at the two scales, due to the localized nature of stress-induced transformations. Strain-life fatigue curves obtained from global and local strain measurements were compared. It was demonstrated that local phenomena play a very important role on the fatigue properties of pseudoelastic SMAs
Fatigue Crack Growth in Austenitic and Martensitic NiTi: Modeling and Experiments
AbstractFatigue crack growth of austenitic and martensitic NiTi shape memory alloys was analyzed, with the purpose of capturing the effects of distinct stress-induced transformation mechanics in the two crystal structures. Mode I crack growth experiments were carried out, and near-crack-tip displacements were captured by in-situ digital image correlation (DIC). A special fitting procedure, based on the William's solution, was used to estimate the effective stress intensity factor (SIF). The SIF was also computed by linear elastic fracture mechanics (LEFM) as well as by a special analytical model that takes into account the unique thermomechanical response of SMAs. A significant difference in the crack growth rate for the two alloys was observed, and it has been attributed to dissimilar dissipative phenomena and different crack-tip stress–strain fields, as also directly observed by DIC. Finally, it was shown that the predictions of the analytical method are in good agreement with effective results obtained by DIC, whereas a very large mismatch was observed with LEFM. Therefore, the proposed analytical model can be actually used to analyze fatigue crack propagation in both martensitic and austenitic NiTi
Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation
Basalt fabric composite, with different twill wave reinforcements, i.e. twill 2/2 and twill 1/3, have been studied in this work by means of experimental tests and numerical finite element (FE) simulations. As fabric reinforcements show repeating undulations of warp and fill yarn, simple mixtures law cannot be applied. As a consequence, the mesoscopic scale, lying between the microscopic and the macroscopic one, has to be taken into account to mechanically characterize a fabric reinforced composite. The aim of this work is to evaluate the stiffness of a fabric reinforced composite in warp and fill direction. In particular a numerical FE model, assuming elliptical sections and sinusoidal shape of the yarns, has been implemented and experimental tests have been carried out in order to validate the proposed model. Finally, the strength and the failure modes of the composite material, for each analysed structure and textile orientation, have been experimentally investigated
Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation
Basalt fabric composite, with different twill wave reinforcements, i.e. twill 2/2 and twill 1/3, have been studied in this work by means of experimental tests and numerical finite element (FE) simulations. As fabric reinforcements show repeating undulations of warp and fill yarn, simple mixtures law cannot be applied.As a consequence, the mesoscopic scale, lying between the microscopic and the macroscopic one, has to betaken into account to mechanically characterize a fabric reinforced composite. The aim of this work is toevaluate the stiffness of a fabric reinforced composite in warp and fill direction. In particular a numerical FEmodel, assuming elliptical sections and sinusoidal shape of the yarns, has been implemented and experimentaltests have been carried out in order to validate the proposed model. Finally, the strength and the failure modesof the composite material, for each analysed structure and textile orientation, have been experimentallyinvestigated
Multiaxial fatigue behavior of additively manufactured Ti6Al4V alloy: Axial–torsional proportional loads
Additive manufacturing (AM) techniques are under constant development and selective laser melting (SLM) is among the most promising ones. However, widespread use of AM techniques in many industries is limited by the different/unusual mechanical properties of AM metallic parts, with respect to traditionally processed ones, especially when dealing with complex fatigue loading conditions. In fact, crack formation and propagation mechanisms are mainly affected by the development of internal defects, residual stresses, and microstructural changes. This is actually one of the major issues the materials engineering community is facing today. In many applications, AM components are subjected to multiaxial fatigue loads, arising from operating conditions and/or from complex geometries, that unavoidably generate crack initiation and propagation mechanisms. The aim of this study is to investigate the multiaxial fatigue behavior of additively manufactured Ti6Al4V samples, made by SLM. Fatigue tests, combining proportional axial and torsional loads, were performed on thin-walled tubular specimens. Full-field measurement techniques, such as the infrared thermography and digital image correlation, were also used to capture temperature and strain evolutions, at both local scales and global scales. Fatigue results highlighted damage mechanisms, and failure modes are strongly related to the applied stress level
Fatigue assessment of Ti-6Al-4V titanium alloy laser welded joints in absence of filler material by means of full-field techniques
The aim of this research activity was to study the fatigue behavior of laser welded joints of titanium alloy, in which the welding was performed using a laser source and in the absence of filler material, by means of unconventional full field techniques: Digital Image Correlation (DIC), and Infrared Thermography (IRT). The DIC technique allowed evaluating the strain gradients around the welded zone. The IRT technique allowed analyzing the thermal evolution of the welded surface during all the fatigue tests. The fatigue limit estimated using the Thermographic Method corresponds with good approximation to the value obtained from the experimental fatigue tests. The obtained results provided useful information for the development of methods and models to predict the fatigue behavior of welded T-joints in titanium alloy
Performances Analysis of Titanium Prostheses Manufactured by Superplastic Forming and Incremental Forming
Abstract Titanium and its alloys are widely used in cranioplasty because they are biocompatible with excellent mechanical properties and favor the osseointegration with the bone. However, when Titanium alloys have to be worked several problems occurred from a manufacturing point of view: the standard procedure for obtaining Titanium prostheses is represented by the machining processes, which result time and cost consuming. The aim of this research consist to introduce alternative flexible sheet forming processes, i.e. Super Plastic Forming (SPF) and Single Point Incremental Forming (SPIF), for the manufacturing of patient-oriented titanium prostheses. The research activities have already highlighted the potentiality of the investigated forming processes that can be alternatively used taking into account both the damage morphology and the need of urgency operation. In the present work, the way of manufacturing the Ti prostheses by SPF and SPIF is described. A comparative analysis has been performed, thus highlighting the peculiarities of the investigated processes and the prostheses feasibility