17 research outputs found

    Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis

    Get PDF
    Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association

    Whole Body Periodic Acceleration Is an Effective Therapy to Ameliorate Muscular Dystrophy in mdx Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway

    Functional and structural characterization of a novel malignant hyperthermia-susceptible variant of DHPR-β1a subunit (CACNB1)

    No full text
    Malignant hyperthermia (MH) susceptibility has been recently linked to a novel variant of β1a subunit of the dihydropyridine receptor (DHPR), a channel essential for Ca2+ regulation in skeletal muscle. Here we evaluate the effect of the mutant variant V156A on the structure/function of DHPR β1a subunit and assess its role on Ca2+ metabolism of cultured myotubes. Using differential scanning fluorimetry, we show that mutation V156A causes a significant reduction in thermal stability of the Src homology 3/guanylate kinase core domain of β1a subunit. Expression of the variant subunit in β1-null mouse myotubes resulted in increased sensitivity to caffeine stimulation. Whole cell patch-clamp analysis of β1a-V156A-expressing myotubes revealed a −2 mV shift in voltage dependence of channel activation, but no changes in Ca2+ conductance, current kinetics, or sarcoplasmic reticulum Ca2+ load were observed. Measurement of resting free Ca2+ and Na+ concentrations shows that both cations were significantly elevated in β1a-V156A-expressing myotubes and that these changes were linked to increased rates of plasmalemmal Ca2+ entry through Na+/Ca2+ exchanger and/or transient receptor potential canonical channels. Overall, our data show that mutant variant V156A results in instability of protein subdomains of β1a subunit leading to a phenotype of Ca2+ dysregulation that partly resembles that of other MH-linked mutations of DHPR α1S subunit. These data prove that homozygous expression of variant β1a-V156A has the potential to be a pathological variant, although it may require other gene defects to cause a full MH phenotype.The work was also supported by Australian National Health and Medical Research Council Grants APP1020589 and APP1002589 (to A. F. Dulhunty and M. G. Casarotto
    corecore