22 research outputs found
Entwicklung eines Simulationsmodells fĂĽr elektrische Radnabenantriebe
Aktuell richten sich immer mehr Forschungsfragen an die Herausforderungen und Möglichkeiten des automatisierten Fahrens. Das vom Bundesministerium für Bildung und Forschung geförderte Verbundprojekt UNICARagil setzt an dieser Stelle an. Zielsetzung des Projekts ist der Entwurf einer disruptiven, modularen und dienstorientierten Fahrzeugarchitektur und die Entwicklung einer elektrifizierten Fahrplattform mit radindividuellem Antrieb und Lenkung. Eine integrierte Fahrdynamik- und Trajektorienregelung (FTR) berechnet aus einer Soll-Trajektorie Stellsignale für die Aktorik. Zur simulativen Überprüfung der Funktionsweise der FTR wird die Simulationssoftware CarMaker verwendet. Die Simulationsmodelle der mechatronischen Systeme sind allerdings unzureichend abgebildet. Die Systemkonfiguration, Systemdynamik und die Dienste Architektur bleibt bisher unberücksichtigt.
Im Rahmen der vorliegenden Masterthesis wird ein Modellbildungsprozess fĂĽr die Komponenten der Dynamikmodule durchlaufen. Dabei werden die Komponenten Antriebs-, Brems-, und Lenkungsaktor, Leistungselektronik, Kinematik sowie Reifen adressiert.
Nach der Darstellung der grundlegenden Aspekte zum Verständnis der Arbeit wird basierend auf einer Literaturrecherche und der Architektur der Dienste eine Anforderungsliste definiert. Die Schnittstellen zur FTR werden für eine Funktionsgewährleistung einbezogen. In der Anforderungs-liste sind zusätzlich zu den Anforderungen der Submodelle der einzelnen Komponenten Verifikationsmethoden und Integrationstests definiert, wodurch der Entwicklungsprozess abgesichert wird.
Anhand der Anforderungen werden Modellierungskonzepte bewertet und basierend auf ihrer Relevanz für die Modellierung ausgewählt. Dazu werden zuerst CarMaker Modelle der Komponenten analysiert und bei Konflikten mit Anforderungen weitere Modelle untersucht. Während dieses Prozesses werden relevante Parameter identifiziert und dokumentiert, die zu Modellparametrierung notwendig sind. Am Ende der Modellierung werden die Komponentenmodelle in Simulink umgesetzt und zu einem Gesamtfahrzeugmodell in CarMaker integriert.
Mittels der Verifikationsmethoden aus der Anforderungsliste wird die Implementierung der Modelle überprüft. Dabei werden in einem ersten Schritt Komponententests anhand von Simulationsdaten durchgeführt. Integrationstests der Komponentenmodelle und des Gesamtsystems sind der nächste Schritt. Falls Unzulänglichkeiten in den Modellen existieren, werden die Modelle in einem iterati-ven Prozess überarbeitet, bis die Anforderungen erfüllt sind. Mittels eines Open-Loop Tests der Dynamikmodule mit Signalen der FTR, werden die Schnittstellen zwischen den beiden Systemen überprüft.
Zum Abschluss der Arbeit werden basierend auf Identifikationsmethoden Versuche abgeleitet, um die in der Modellbildung definierten Parameter der einzelnen Komponentenmodelle zu ermitteln
Fundamental Design Criteria for Logical Scenarios in Simulation-based Safety Validation of Automated Driving Using Sensor Model Knowledge
Scenario-based virtual validation of automated driving functions is a promising method to reduce testing effort in real traffic. In this work, a method for deriving scenario design criteria from a sensor modeling point of view is proposed. Using basic sensor technology specific equations as rough but effective boundary conditions, the accessible information for the system under test are determined. Subsequently, initial conditions such as initial poses of dynamic objects are calculated using the derived boundary conditions for designing logical scenarios. Further interest is given on triggers starting movements of objects during scenarios that are not time but object dependent. The approach is demonstrated on the example of the radar equation and first exemplary results by identifying relevance regions are shown
Digitalize the Twin: A Method for Calibration of Reference Data for Transfer Real-World Test Drives into Simulation
In the course of the development of automated driving, there has been increasing interest in obtaining ground truth information from sensor recordings and transferring road traffic scenarios to simulations. The quality of the "ground truth" annotation is dictated by its accuracy. This paper presents a method for calibrating the accuracy of ground truth in practical applications in the automotive context. With an exemplary measurement device, we show that the proclaimed accuracy of the device is not always reached. However, test repetitions show deviations, resulting in non-uniform reliability and limited trustworthiness of the reference measurement. A similar result can be observed when reproducing the trajectory in the simulation environment: the exact reproduction of the driven trajectory does not always succeed in the simulation environment shown as an example because deviations occur. This is particularly relevant for making sensor-specific features such as material reflectivities for lidar and radar quantifiable in dynamic cases
Digitalize the Twin: A Method for Calibration of Reference Data for Transfer Real-World Test Drives into Simulation
In the course of the development of automated driving, there has been increasing interest in obtaining ground truth information from sensor recordings and transferring road traffic scenarios to simulations. The quality of the “ground truth” annotation is dictated by its accuracy. This paper presents a method for calibrating the accuracy of ground truth in practical applications in the automotive context. With an exemplary measurement device, we show that the proclaimed accuracy of the device is not always reached. However, test repetitions show deviations, resulting in non-uniform reliability and limited trustworthiness of the reference measurement. A similar result can be observed when reproducing the trajectory in the simulation environment: the exact reproduction of the driven trajectory does not always succeed in the simulation environment shown as an example because deviations occur. This is particularly relevant for making sensor-specific features such as material reflectivities for lidar and radar quantifiable in dynamic cases
Making automotive radar sensor validation measurements comparable
Virtual validation of radar sensor models is becoming increasingly important for the safety validation of Light Detection and Rangings (lidars). Therefore, methods for quantitative comparison of radar measurements in the context of model validation need to be developed. This paper presents a novel methodology for accessing and quantifying validation measurements of radar sensor models. This method uses Light Detection and Rangings (lidars) and the so-called Double Validation Metric (DVM) to effectively quantify deviations between distributions. By applying this metric, the study measures the reproducibility and repeatability of radar sensor measurements. Different interfaces and different levels of detail are investigated. By comparing the radar signals from real-world experiments where different objects are present, valuable insights are gained into the performance of the sensor. In particular, the research extends to assessing the impact of varying rain intensities on the measurement results, providing a comprehensive understanding of the sensor’s behavior under these conditions. This holistic approach significantly advances the evaluation of radar sensor capabilities and enables the quantification of the maximum required quality of radar simulation models
Source Code xosc-Converter: "Digitalize the twin: A method for calibration of reference data for transfer real-world test drives into simulation"
The provided code converts measurement data of a GNSS device into a OpenScenario data, which can be used in simulation tools in the automotive context
Road Spray in Lidar and Radar Data for Individual Moving Objects
Simulation-based testing supports the challenging task of safety validation of automated driving functions. Virtual testing always entails the modeling of automotive perception sensors and their environment. In the real world, these sensors are not only exposed to weather conditions like rain, fog, snow etc., but environmental influences also appear locally. Road spray is one of the more challenging occurrences, because it involves other moving objects in the scenario. This data set is designed to systematically analyze the influence of road spray on lidar and radar sensors. It consists of sensor measurements of two vehicle classes driving over asphalt with three water levels to differentiate multiple influence factors