85 research outputs found

    Elevation-Distributed Multistage Reverse Osmosis Desalination with Seawater Pumped Storage

    Get PDF
    A seawater reverse osmosis (RO) plant layout based on multistage RO with stages located at different elevations above sea level is described. The plant uses the weight of a seawater column from pumped storage as head pressure for RO (gravity-driven multistage RO) or to supplement high-pressure pumps used in RO (gravity-assisted multistage RO). The use of gravitational force reduces the specific energy for RO compared to using high-pressure pumps. By locating the RO stages at different elevations based on demand sites, the total specific energy consumption for RO and permeate transport to different elevations above sea level is reduced from that for locating the RO process entirely at sea level followed by lifting the desalinated water. A final RO stage at sea level uses seawater pressurized by energy recovery from the residual energy of the brine generated from the preceding RO stage. Examples of the plant layout that do not include pump inefficiency and head losses in pipes are described for South Sinai, Egypt, which is a mountainous region that suffers from water scarcity. A gravity-driven multistage RO with a storage tank at 660 m above sea level is considered. For five RO stages located 316–57 m above sea level with 10% recovery at each stage, the specific energy is ~ 32% lower than that for a plant located at sea level operating at the minimum specific energy followed by lifting the same quantity of desalinated water to the elevations of the distributed RO stages. For two stages located at 222 and 57 m above sea level with 30 and 20% recovery, respectively, the reduction in specific energy is ~ 27%. For gravity-assisted five-stage RO with the first stage at 260 m above sea level, while the last stage is at sea level with 10% recovery at each stage the reduction in specific energy is ~ 32%. The proposed RO plant layouts can be adapted to other regions with comparable topography

    STM Study of Pulsed Laser Assisted Growth of Ge Quantum Dot on Si(1 0 0)-(2 × 1)

    Get PDF
    Ge quantum dot formation on Si(1 0 0)-(2 × 1) by nanosecond pulsed laser deposition under laser excitation was investigated. Scanning tunneling microscopy was used to probe the growth mode and morphology. Excitation was performed during deposition using laser energy density of 25-100 mJ/cm 2. Faceted islands were achieved at a substrate temperature of ∼250 °C only when using laser excitation. The island morphology changes with increased laser excitation energy density although the faceting of the individual islands remains the same. The size of the major length of islands increases with the excitation laser energy density. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2014 EDP Sciences

    Electronically Enhanced Surface Diffusion During Ge Growth on Si(100)

    Get PDF
    The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3567918

    Excitation-Induced Germanium Quantum Dot Formation on Si (100)-(2×1)

    Get PDF
    The effect of nanosecond pulsed laser excitation on the self-assembly of Ge quantum dots grown by pulsed laser deposition on Si (100)-(2×1) was studied. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to probe the quantum dot structure and morphology. At room temperature, applying the excitation laser decreased the surface roughness of the grown Ge film. With surface electronic excitation, crystalline Ge quantum dots were formed at 250 °C, a temperature too low for their formation without excitation. At a substrate temperature of 390 °C, electronic excitation during growth was found to improve the quantum dot crystalline quality, change their morphology, and decrease their size distribution almost by half. A purely electronic mechanism of enhanced surface hopping of the Ge adatoms is proposed. © 2010 American Institute of Physics. [doi:10.1063/1.3462436

    Acceleration Element for Femtosecond Electron Pulse Compression

    Get PDF
    An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results show that the electron pulse front and pulse duration can be improved by compensating for the effects of space charge and the initial energy spread of photoelectrons with a Lambertian angular distribution. Depending on the design parameters and the shape of the electron pulse, for a femtosecond electron gun with an electron energy of 30 keV, 103 electrons per pulse, and an electron drift length of 40 cm, the electron pulse duration can be reduced from 550 to 200 fs when using a compensating cavity with an average radius of 1.7 and 5.6 cm in length. Electron pulses shorter than 200 fs can be achieved if the length of the drift region is reduced. © 2002 The American Physical Society

    A New Compensating Element for a Femtosecond Photoelectron Gun

    Get PDF
    Design and analysis of a new compensating element for improving the electron pulse front and compressing the pulse duration in a femtosecond photoelectron gun are described. The compensating element is a small metallic cylindrical cavity in which an external voltage is applied in such a way that a special electric field forms and interacts with the electron pulse. This electric field reduces the distances between the faster and slower electrons inside the cavity and efficiently compensates for electron pulse broadening caused by the photoelectron energy spread and space charge effects. Poisson\u27s equation and the equation of motion are solved to obtain the electron trajectories. Results highlight the important design parameters of the new compensating element and show its feasibility in compressing electron pulses in the femtosecond regime. © 2001 American Institute of Physics. [DOI: 10.1063/1.1387254

    Femtosecond Pulsed Laser Deposition of Indium on Si (100)

    Get PDF
    Deposition of indium on Si(100) substrates is performed under ultrahigh vacuum with an amplified Ti:sapphire laser (130 fs) at wavelength of 800 nm and laser fluence of 0.5 J/cm2. Indium films are grown at room temperature and at higher substrate temperatures with a deposition rate of similar to 0.05 ML/pulse. Reflection high-energy electron diffraction (RHEED) is used during the deposition to study the growth dynamics and the surface structure of the grown films. The morphology of the grown films is examined by ex situ atomic force microscopy (AFM). At room temperature indium is found to form epitaxial two-dimensional layers on the Si(100)-(2x1) surface followed by three-dimensional islands. AFM images show different indium island morphologies such as hexagonal and elongated shapes. At substrate temperatures of 400-420 °C, RHEED intensity oscillations are observed during film growth indicating that the indium film grows in the layer-by-layer mode

    Effect of Electronic Excitation on Thin Film Growth

    Get PDF
    The effect of nanosecond pulsed laser excitation on surface diffusion during growth of Ge on Si(100) at 250 degrees C was studied. In Situ reflection high-energy electron diffraction (RHEED) was used to measure the surface diffusion coefficient while ex situ atomic force microscopy (AFM) was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during growth of Ge on Si(100), changes the growth morphology, improves crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. Ge quantum dots were grown on Si(100)-(2x1) by pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In-situ reflection high-energy electron diffraction and ex-situ atomic force microscopy were used to analyze the fim structure and morphology. The morphology of germanium islands on silicon was studied at differect coverages. The results show that femtosecond pulsed laser depositon reduces the minimum temperature for epitaxial growth of Ge quantum dots to ~280 degrees C, which is 120 degrees C lower then previously observed in nanosecond pulsed laser deposition and more than 200 degrees C lower than that reported for molecular beam epitaxy and chemical vapor deposition

    Anisotropic Response of Nanosized Bismuth Films Upon Femtosecond Laser Excitation Monitored by Ultrafast Electron Diffraction

    Get PDF
    The lattice response of 5 nm thick bismuth film to femtosecond laser excitation is probed by ultrafast electron diffraction. The transient decay time after laser excitation is greater for diffraction from (012) lattice planes compared to (110) planes and is reduced for both planes with the increased laser fluence. These results indicate that different energy coupling mechanisms to the lattice occur depending on the crystal direction. The behavior of the diffraction peak width indicates partial disorder of the film upon photoexcitation that increases together with the laser fluence. © 2011 American Institute of Physics. [doi:10.1063/1.3652919

    Comment on Ultrafast Electron Optics: Propagation Dynamics of Femtosecond Electron Packets J. Appl. Phys. 92, 1643 (2002)

    Get PDF
    In a recent article 关J. Appl. Phys. 92, 1643 共2002兲兴 Siwick et al. investigated the space-charge-limited electron pulse propagation in a photoelectron gun using an analytical approach, referred to as mean-field theory, and a numerical N-body simulation. The results were compared with a one-dimensional fluid model 关J. Appl. Phys. 91, 462 共2002兲兴, and a conclusion was made that the fluid model overestimates the pulse duration after a certain propagation time. Although the mean-field theory and N-body simulation give exactly the same results for all examples studied, we point out that the expression for the on-axis potential in their mean-field model is inapplicable to investigating the electron space-charge dynamics in an ultrafast electron packet. We correct that expression and derive a two-dimensional model that is in agreement with our previous one-dimensional fluid model. We also point out several areas where Siwick et al. have misinterpreted the one-dimensional fluid model. © 2003 American Institute of Physics
    • …
    corecore