32 research outputs found

    A system for exposing molecules and cells to biologically relevant and accurately controlled steady-state concentrations of nitric oxide and oxygen

    Get PDF
    Nitric oxide (NO) plays key roles in cell signaling and physiology, with diverse functions mediated by NO concentrations varying over three orders-of-magnitude. In spite of this critical concentration dependence, current approaches to NO delivery in vitro result in biologically irrelevant and poorly controlled levels, with hyperoxic conditions imposed by ambient air. To solve these problems, we developed a system for controlled delivery of NO and O[subscript 2] over large concentration ranges to mimic biological conditions. Here we describe the fabrication, operation and calibration of the delivery system. We then describe applications for delivery of NO and O[subscript 2] into cell culture media, with a comparison of experimental results and predictions from mass transfer models that predict the steady-state levels of various NO-derived reactive species. We also determined that components of culture media do not affect the steady-state levels of NO or O[subscript 2] in the device. This system provides critical control of NO delivery for in vitro models of NO biology and chemistry.National Cancer Institute (U.S.) (CA026731)National Cancer Institute (U.S.) (CA116318)National Institute of Environmental Health Sciences (ES002109

    Melanocortin 4 Receptors Reciprocally Regulate Sympathetic and Parasympathetic Preganglionic Neurons

    Get PDF
    Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are likely dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension

    A Guanine Nucleotide-independent Inwardly Rectifying Cation Permeability Is Associated with P2Y 1 Receptor Expression in Xenopus Oocytes

    Get PDF
    The functional properties of the G protein-coupled P2Y1 receptor were investigated in Xenopus oocytes. Incubation of oocytes expressing either the human or turkey P2Y1 receptor with adenine nucleotide agonists resulted in an increase in Cl- current and activation of a novel cation current with an inwardly rectifying current-voltage relationship. Activation of either the human P2Y2 (P2U-purinergic) or M1 muscarinic receptor expressed in oocytes resulted in an increase in Cl- current similar to that observed in P2Y1 receptor-expressing oocytes but had no effect on cation current. P2 receptor agonists stimulated both the cation current and Cl- current in P2Y1 receptor-expressing oocytes with EC50 values and an order of potency (2-methylthioadenosine diphosphate > 2-methylthioadenosine triphosphate (2MeSATP) > ATP > UTP) that were similar to those previously observed for activation of phospholipase C in 1321N1 human astrocytoma cells stably expressing the human or turkey P2Y1 receptor. The P2Y receptor antagonists suramin and pyridoxal phosphate 6-azophenyl-2'-4'-disulfonic acid both shifted to the right the concentration-response relationship for 2MeSATP for stimulation of oocyte currents. Although injection of oocytes with either GDPbetaS (guanyl-5'-yl thiophosphate) or GTPgammaS (guanosine 5'-3-O-(thio)triphosphate) resulted in loss of adenine nucleotide-promoted Cl- channel activation, neither guanine nucleotide altered the 2MeSATP-stimulated cation current. These data are consistent with the view that activation of the novel cation current by the P2Y1 receptor does not involve a G protein. Tail current analysis of the novel P2Y1 receptor-associated cation conductance revealed that the open channel current-voltage relationship was outwardly rectifying with a reversal potential of -38 mV for the turkey P2Y1 receptor and -36 mV for the human P2Y1 receptor. Replacement of Na+ with K+ ions in the bathing solution produced a shift in reversal potential to near zero mV, but significant outward rectification remained. The cation current was not permeable to either Ca2+ or Ba2+ and exhibited steady-state inactivation at holding potentials below -60 mV. These results indicate that the P2Y1 receptor exhibits both metabotropic properties and a novel G protein-independent ionotropic response when expressed in Xenopus oocytes

    A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13

    Get PDF
    SummaryObesity, type 2 diabetes, and heart failure are associated with aberrant cardiac metabolism. We show that the heart regulates systemic energy homeostasis via MED13, a subunit of the Mediator complex, which controls transcription by thyroid hormone and other nuclear hormone receptors. MED13, in turn, is negatively regulated by a heart-specific microRNA, miR-208a. Cardiac-specific overexpression of MED13 or pharmacologic inhibition of miR-208a in mice confers resistance to high-fat diet-induced obesity and improves systemic insulin sensitivity and glucose tolerance. Conversely, genetic deletion of MED13 specifically in cardiomyocytes enhances obesity in response to high-fat diet and exacerbates metabolic syndrome. The metabolic actions of MED13 result from increased energy expenditure and regulation of numerous genes involved in energy balance in the heart. These findings reveal a role of the heart in systemic metabolic control and point to MED13 and miR-208a as potential therapeutic targets for metabolic disorders.PaperCli

    A role for ΔfosB in calorie restriction-induced metabolic changes

    Get PDF
    Background: Calorie restriction (CR) induces long-term changes in motivation to eat highly palatable food and, in body weight regulation, through an unknown mechanism. Methods: After a period of CR and refeeding, mice were assessed by behavioral and metabolic studies and for levels of the transcription factor ΔFosB. The ΔFosB levels were then increased specifically in nucleus accumbens (NAc) with viral-mediated gene transfer, and behavioral and metabolic studies were conducted. Results: We show that accumulation of ΔFosB in the NAc shell after CR in mice corresponds to a period of increased motivation for high fat reward and reduced energy expenditure. Furthermore, ΔFosB overexpression in this region increases instrumental responding for a high fat reward via an orexin-dependent mechanism while also decreasing energy expenditure and promoting adiposity. Conclusions: These results suggest that ΔFosB signaling in NAc mediates adaptive responses to CR.Instituto Multidisciplinario de Biología Celula

    A role for ΔfosB in calorie restriction-induced metabolic changes

    Get PDF
    Background: Calorie restriction (CR) induces long-term changes in motivation to eat highly palatable food and, in body weight regulation, through an unknown mechanism. Methods: After a period of CR and refeeding, mice were assessed by behavioral and metabolic studies and for levels of the transcription factor ΔFosB. The ΔFosB levels were then increased specifically in nucleus accumbens (NAc) with viral-mediated gene transfer, and behavioral and metabolic studies were conducted. Results: We show that accumulation of ΔFosB in the NAc shell after CR in mice corresponds to a period of increased motivation for high fat reward and reduced energy expenditure. Furthermore, ΔFosB overexpression in this region increases instrumental responding for a high fat reward via an orexin-dependent mechanism while also decreasing energy expenditure and promoting adiposity. Conclusions: These results suggest that ΔFosB signaling in NAc mediates adaptive responses to CR.Instituto Multidisciplinario de Biología Celula

    Leptin mediates the increase in blood pressure associated with obesity.

    Get PDF
    Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species

    Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

    Get PDF
    The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI
    corecore