622 research outputs found

    On Coherent States and q-Deformed Algebras

    Full text link
    We review some aspects of the relation between ordinary coherent states and q-deformed generalized coherent states with some of the simplest cases of quantum Lie algebras. In particular, new properties of (q-)coherent states are utilized to provide a path integral formalism allowing to study a modified form of q-classical mechanics, to probe some geometrical consequences of the q-deformation and finally to construct Bargmann complex analytic realizations for some quantum algebras.Comment: Presented at the 'International Symposium on Coherent States' June 1993, USA 14 pages, plain LATEX, FTUV/93-37, IFIC/93-2

    Brownian motion on a smash line

    Get PDF
    Brownian motion on a smash line algebra (a smash or braided version of the algebra resulting by tensoring the real line and the generalized paragrassmann line algebras), is constructed by means of its Hopf algebraic structure. Further, statistical moments, non stationary generalizations and its diffusion limit are also studied. The ensuing diffusion equation posseses triangular matrix realizations.Comment: Latex, 6 pages no figures. Submitted to Journal of Nonlinear Mathematical Physics. Special Issue of Proccedings of NEEDS'9

    Quantum Optical Random Walk: Quantization Rules and Quantum Simulation of Asymptotics

    Get PDF
    Rules for quantizing the walker+coin parts of a classical random walk are provided by treating them as interacting quantum systems. A quantum optical random walk (QORW), is introduced by means of a new rule that treats quantum or classical noise affecting the coin's state, as sources of quantization. The long term asymptotic statistics of QORW walker's position that shows enhanced diffusion rates as compared to classical case, is exactly solved. A quantum optical cavity implementation of the walk provides the framework for quantum simulation of its asymptotic statistics. The simulation utilizes interacting two-level atoms and/or laser randomly pulsating fields with fluctuating parameters.Comment: 18 pages, 3 figure

    q-Symmetries in DNLS-AL chains and exact solutions of quantum dimers

    Get PDF
    Dynamical symmetries of Hamiltonians quantized models of discrete non-linear Schroedinger chain (DNLS) and of Ablowitz-Ladik chain (AL) are studied. It is shown that for nn-sites the dynamical algebra of DNLS Hamilton operator is given by the su(n)su(n) algebra, while the respective symmetry for the AL case is the quantum algebra su_q(n). The q-deformation of the dynamical symmetry in the AL model is due to the non-canonical oscillator-like structure of the raising and lowering operators at each site. Invariants of motions are found in terms of Casimir central elements of su(n) and su_q(n) algebra generators, for the DNLS and QAL cases respectively. Utilizing the representation theory of the symmetry algebras we specialize to the n=2n=2 quantum dimer case and formulate the eigenvalue problem of each dimer as a non-linear (q)-spin model. Analytic investigations of the ensuing three-term non-linear recurrence relations are carried out and the respective orthonormal and complete eigenvector bases are determined. The quantum manifestation of the classical self-trapping in the QDNLS-dimer and its absence in the QAL-dimer, is analysed by studying the asymptotic attraction and repulsion respectively, of the energy levels versus the strength of non-linearity. Our treatment predicts for the QDNLS-dimer, a phase-transition like behaviour in the rate of change of the logarithm of eigenenergy differences, for values of the non-linearity parameter near the classical bifurcation point.Comment: Latex, 19pp, 4 figures. Submitted for publicatio

    Dynamics of organizational culture: Individual beliefs vs. social conformity

    Get PDF
    The complex nature of organizational culture challenges our ability to infers its underlying dynamics from observational studies. Recent computational studies have adopted a distinct different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work - (a) omittance of an individual's strive for achieving cognitive coherence, (b) limited integration of important contextual factors - by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of organizational culture, yet be composed of individuals with reduced levels of coherence, (ii) the components of social conformity - peer-pressure and social rank - are influential at different aggregation levels.Comment: 20 pages, 8 figure
    • …
    corecore