353 research outputs found
Optimization of online patient scheduling with urgencies and preferences
We consider the online problem of scheduling patients with urgencies and preferences on hospital resources with limited capacity. To solve this complex scheduling problem effectively we have to address the following sub problems: determining the allocation of capacity to patient groups, setting dynamic rules for exceptions to the allocation, ordering timeslots based on scheduling efficiency, and incorporating patient preferences over appointment times in the scheduling process. We present a scheduling approach with optimized parameter values that solves these issues simultaneously. In our experiments, we show how our approach outperforms standard scheduling benchmarks for a wide range of scenarios, and how we can efficiently trade-off scheduling performance and fulfilling patient preferences
Modeling Patient Journeys for Demand Segments in Chronic Care, With an Illustration to Type 2 Diabetes
Chronic care is an important area for cost-effective and efficient health service delivery. Matching demand and services for chronic care is not easy as patients may have different needs in different stages of the disease. More insight is needed into the complete patient journey to do justice to the services required in each stage of the disease, to the different experiences of patients in each part of the journey, and to outcomes in each stage. With patient journey we refer to the “journey” of the patient along the services received within a demand segment of chronic care. We developed a generic framework for describing patient journeys and provider networks, based on an extension of the well-known model of Donabedian, to relate demand, services, resources, behavior, and outcomes. We also developed a generic operational model for the detailed modeling of services and resources, allowing for insight into costs. The generic operational model can be tailored to the specific characteristics of patient groups. We applied this modeling approach to type 2 diabetes (T2D) patients. Diabetes care is a form of chronic care for patients suffering diabetes mellitus. We studied the performance of T2D networks, using a descriptive model template. To identify and describe demand we made use of the following demand segments within the diabetes type 2 population: patients targeted for prevention; patients with stage 1 diabetes treated by their GP with lifestyle advice; patients with diabetes stage 2 treated by their GP with lifestyle advice and oral medication; patients with stage 3 diabetes treated by their GP with lifestyle advice, oral medication, and insulin injections; patients with stage 4 diabetes with complications (treated by internal medicine specialists). We used a Markov model to describe the transitions between the different health states. The model enables the patient journey through the health care system for cohorts of newly diagnosed T2D patients to be described, and to make a projection of the resource requirements of the different demand segments over the years. We illustrate our approach with a case study on a T2D care network in The Netherlands and reflect on the role of demand segmentation to analyse the case study results, with the objective of improving the T2D service delivery
- …