3 research outputs found
Optimization of a Molecularly Imprinted Polymer Synthesis for a Rapid Detection of Caffeic Acid in Wine
International audienceMolecular imprinting is an efficient strategy to make the detection of compounds more specific and more selective. This targeted analytical strategy using molecularly imprinted polymer (MIP) synthesis needs to obtain the optimized conditions. A selective molecularly imprinted polymer was prepared for caffeic acid (CA) detection after varying the following synthesis parameters: functional monomer type (N-phenylacrylamide, N-PAA or methacrylic acid, MAA), solvent type (acetonitrile/methanol or acetonitrile/toluene), and the polymerization method (UV or thermal initiation). The optimal polymer was obtained using MAA as a functional monomer, acetonitrile/methanol as solvent, and UV polymerization. Morphological characterizations were done for the optimal CA-MIP using mid-infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption. The optimal polymer showed good specificity and selectivity in the presence of interferents (antioxidants having a chemical structure close to CA) in a hydroalcoholic solution. The electrochemical detection of CA was performed by cyclic voltammetry (CV) after the interaction between CA and the optimal MIP in a wine sample. The linear range of the developed method was between 0 and 1.11 mM, the limit of detection (LOD) was 0.13 mM, and the limit of quantification (LOQ) was 0.32 mM. HPLC-UV was used to validate the newly developed method. Recovery values were between 104% and 111%
Combination of Screen-Printed Carbon Electrode and Molecularly Imprinted Polymers for the Selective Determination of Phenolic Compounds in Wine
International audienceCaffeic acid (CA) is an efficient antioxidant found in wine and in plants and can be extracted from the by-products of the food industry. A molecularly imprinted polymer specific to caffeic acid (CA-MIP) was prepared by radical polymerization using N-phenylacrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and azobisisobutyronitrile as the initiator, in the presence of CA as the template molecule. The rebinding activities between the polymers and CA were promoted by an indirect method and characterized by cyclic voltammetry (CV) using a screen-printed carbon electrode (SPCE). It is a fast method, which only requires simple and portable instrumentation. The polymer showed a high selectivity toward CA and a good repeatability. CA-MIP was then applied in wine samples spiked with CA, and the results were compared to those obtained by a chromatographic method. With a limit of detection of 0.06 mM in wine, the recovery values confirmed that the method is suitable for further applications
The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants
International audienceThis review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry with molecular imprinting to valorize different compounds, the growing prominence of antioxidants in the food, medical, and paramedical sectors deserves to combine the three areas, which may lead to innovative industrial applications with satisfactory results for both manufacturers and consumers